【題目】已知四棱錐,四邊形是正方形,

(1)證明:平面平面

(2)若的中點(diǎn),求二面角的余弦值.

【答案】(1)見(jiàn)解析(2)

【解析】試題分析:(1可得,即,為正方形,可得,從而得平面,由面面垂直的判定定理可得平面平面;(2設(shè)的中點(diǎn)為,面面垂直的性質(zhì)可得平面,在平面內(nèi),過(guò)作直線,則兩兩垂直,為坐標(biāo)原點(diǎn), 所在直線為軸, 軸, 軸,建立空間直角坐標(biāo)系,分別根據(jù)向量垂直數(shù)量積為零列方程組求出平面與平面的一個(gè)法向量,根據(jù)空間向量夾角余弦公式,可得結(jié)果.

試題解析(1)∵,

,即

又∵為正方形,∴

,

平面,∵平面,∴平面平面;

(2)

設(shè)的中點(diǎn)為,∵,∴,

由(1)可知平面平面,且平面平面,

平面,

在平面內(nèi),過(guò)作直線,則兩兩垂直.

為坐標(biāo)原點(diǎn), 所在直線為軸, 軸, 軸,建立空間直角坐標(biāo)系,

,

設(shè)平面的法向量為,

, ,即,取,

設(shè)平面的法向量為

, ,即,取

,由圖可知,二面角的余弦值為

【方法點(diǎn)晴】本題主要考查面面垂直的判定定理以及利用空間向量求二面角,屬于難題.空間向量解答立體幾何問(wèn)題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫(xiě)出相應(yīng)點(diǎn)的坐標(biāo),求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線 .

1)已知直線與雙曲線交于不同的兩點(diǎn),,求實(shí)數(shù)的值;

(2)過(guò)點(diǎn)作直線與雙曲線交于不同的兩點(diǎn),若弦恰被點(diǎn)平分,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】遂寧市觀音湖港口船舶?康姆桨甘窍鹊较韧#

(1)若甲乙兩艘船同時(shí)到達(dá)港口,雙方約定各派一名代表從1,2,3,4,5中各隨機(jī)選一個(gè)數(shù)(甲、乙選取的數(shù)互不影響),若兩數(shù)之和為偶數(shù),則甲先?浚蝗魞蓴(shù)之和為奇數(shù),則乙先?浚@種規(guī)則是否公平?請(qǐng)說(shuō)明理由.

(2)根據(jù)以往經(jīng)驗(yàn),甲船將于早上7:00~8:00到達(dá),乙船將于早上7:30~8:30到達(dá),請(qǐng)求出甲船先?康母怕

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的部分圖象如圖所示.

(1)求f(x)的解析式,并求函數(shù)f(x)在[﹣ , ]上的值域;
(2)在△ABC中,AB=3,AC=2,f(A)=1,求sin2B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩俱樂(lè)部舉行乒乓球團(tuán)體對(duì)抗賽.雙方約定:
①比賽采取五場(chǎng)三勝制(先贏三場(chǎng)的隊(duì)伍獲得勝利.比賽結(jié)束)
②雙方各派出三名隊(duì)員.前三場(chǎng)每位隊(duì)員各比賽﹣場(chǎng)
已知甲俱樂(lè)部派出隊(duì)員A1、A2 . A3 , 其中A3只參加第三場(chǎng)比賽.另外兩名隊(duì)員A1、A2比賽場(chǎng)次未定:乙俱樂(lè)部派出隊(duì)員B1、B2 . B3 , 其中B1參加第一場(chǎng)與第五場(chǎng)比賽.B2參加第二場(chǎng)與第四場(chǎng)比賽.B3只參加第三場(chǎng)比賽
根據(jù)以往的比賽情況.甲俱樂(lè)部三名隊(duì)員對(duì)陣乙俱樂(lè)部三名隊(duì)員獲勝的概率如表:

A1

A2

A3

B1

B2

B3


(1)若甲俱樂(lè)部計(jì)劃以3:0取勝.則應(yīng)如何安排A1、A2兩名隊(duì)員的出場(chǎng)順序.使得取勝的概率最大?
(2)若A1參加第一場(chǎng)與第四場(chǎng)比賽,A2參加第二場(chǎng)與第五場(chǎng)比賽,各隊(duì)員每場(chǎng)比賽的結(jié)果互不影響,設(shè)本次團(tuán)體對(duì)抗賽比賽的場(chǎng)數(shù)為隨機(jī)變量X,求X的分布列及數(shù)學(xué)期望E(X)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知所在的平面, 的直徑, 上一點(diǎn),且中點(diǎn), 中點(diǎn).

(1)求證:

(2)求證: ;

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,空間四邊形ABCD的對(duì)棱AD、BC成600的角,且AD=BC=a,平行于AD與BC的截面分別交AB、AC、CD、BD于E、F、G、H.

(1)求證:四邊形EFGH為平行四邊形;

(2)E在AB的何處時(shí)截面EFGH的面積最大?最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品在近30天內(nèi)每件的銷(xiāo)售價(jià)格P元和時(shí)間t(t∈N)的關(guān)系如圖所示.

(1)請(qǐng)確定銷(xiāo)售價(jià)格P(元)和時(shí)間t(天)的函數(shù)解析式;

(2)該商品的日銷(xiāo)售量Q(件)與時(shí)間t(天)的關(guān)系是:Q=﹣t+40(0≤t≤30,t∈N),求該商品的日銷(xiāo)售金額y(元)與時(shí)間t(天)的函數(shù)解析式;

(3)求該商品的日銷(xiāo)售金額y(元)的最大值,并指出日銷(xiāo)售金額最大的一天是30天中的哪一天?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

當(dāng)時(shí),試判斷函數(shù)在區(qū)間上的單調(diào)性,并證明;

若不等式上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案