證法一:如圖,ABCD中,求證:AB2+BC2+CD2+DA2=AC2+BD2.
設(shè)=b, =a,AC2=||2=(a+b)2=a2+b2+
BD2=||2=(a-b)2=a2+b2
①+②得
AC2+BD2=
故原命題得證.
證法二:如圖,建立直角坐標(biāo)系,設(shè)A(m,n),C(p,0),
則=(m,n).
∴D(p+m,n).
∴有AB2=CD2==m2+n2,DA2=BC2==p2.
∴有AB2+BC2+CD2+DA2=2(m2+n2+p2).
又∵BD2==(p+m)2+n2,
AC2==(m-p)2+n2,
∴有BD2+AC2=(p+m)2+n2+(m-p)2+n2=2(p2+m2+n2).
∴原命題成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
BE | AB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年哈師大、東北師大、遼寧實(shí)驗(yàn)中學(xué)高三第一次聯(lián)合模擬理數(shù)學(xué)卷(解析版) 題型:解答題
橢圓的離心率為,且過點(diǎn)直線與橢圓M交于A、C兩點(diǎn),直線與橢圓M交于B、D兩點(diǎn),四邊形ABCD是平行四邊形
(1)求橢圓M的方程;
(2)求證:平行四邊形ABCD的對(duì)角線AC和BD相交于原點(diǎn)O;
(3)若平行四邊形ABCD為菱形,求菱形ABCD的面積的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆浙江省高二上學(xué)期八校聯(lián)考理科數(shù)學(xué) 題型:解答題
(本小題滿分14分)已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到
兩個(gè)焦點(diǎn)的距離之和為,離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左、右焦點(diǎn)分別為、,過點(diǎn)的直線與該橢圓交于點(diǎn)、,
以、為鄰邊作平行四邊形,求該平行四邊形對(duì)角線的長(zhǎng)度
的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com