精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=
12
x2+lnx
(1)求f(x)在區(qū)間[1,e]上的最大值與最小值;
(2)已知直線l:y=2x+a與函數f(x)的圖象相切,求切點的坐標及a的值.
分析:(1)求出函數f(x)導數f′(x),判斷出f′(x)=x+
1
x
>0在區(qū)間[1,e]上恒成立,得到f(x)在區(qū)間[1,e]上遞增,進一步求出f(x)在區(qū)間[1,e]上的最大值與最小值;
(2)令f′(x)=2求得x=1將x=1代入f(x)=
1
2
x2+lnx得到切點坐標為(1,
1
2
);將切點坐標代入直線方程求得a的值
解答:解:(1)對函數f(x)求導數得:f′(x)=x+
1
x
;
因為f′(x)=x+
1
x
>0在區(qū)間[1,e]上恒成立,
所以f(x)在區(qū)間[1,e]上遞增,
所以當x=1時,f(x)有最小值為f(1)=
1
2
;當x=e時,f(x)有最大值f(e)=
1
2
e2+1

(2)由題意得f′(x)=2即f′(x)=x+
1
x
=2解得x=1
將x=1代入f(x)=
1
2
x2+lnx得f(1)=
1
2
即切點坐標為(1,
1
2
);
將切點坐標(1,
1
2
)代入直線l:y=2x+a得a=-
3
2

故切點坐標為(1,
1
2
);a=-
3
2
點評:本題考查利用導函數的符號判斷函數的單調性;考查函數在切點處的導數值為切線的斜率,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),則實數x的取值范圍是( 。
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
1,x∈Q
0,x∉Q
,則f[f(π)]=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
1-x
ax
+lnx(a>0)

(1)若函數f(x)在[1,+∞)上為增函數,求實數a的取值范圍;
(2)當a=1時,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)當a=1時,求證對任意大于1的正整數n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,則下列結論中正確的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=1+logax(a>0,a≠1),滿足f(9)=3,則f-1(log92)的值是( 。

查看答案和解析>>

同步練習冊答案