【題目】如圖,在四棱錐PABCD中,PC底面ABCD,底面ABCD是直角梯形,ABAD,ABCDAB2AD2CD2,EPB的中點(diǎn).

(1)求證:平面EAC平面PBC;

(2)若二面角PACE的余弦值為,求直線PA與平面EAC所成角的正弦值.

【答案】(1)見解析(2

【解析】(1)PC平面ABCD,AC平面ABCD,ACPC.AB2,ADCD1,ACBC.

AC2BC2AB2.∴ACBC.

BCPCCAC平面PBC.

AC平面EAC,

平面EAC平面PBC.

(2)如圖,以點(diǎn)C為原點(diǎn), , 分別為x軸、y軸、z軸正方向,建立空間直角坐標(biāo)系,

C(0,0,0)A(1,1,0),B(1,-1,0),設(shè)P(0,0,a)(a>0)

E, (1,1,0), (0,0a), .m(1,-1,0),則m·m·0,m為面PAC的法向量.設(shè)n(xy,z)為面EAC的法向量,則n·n·0,即xay=-a,z=-2,則n(a,-a,-2),依題意,|cosmn|,則a2.于是n(2,-2,-2)(1,1,-2).設(shè)直線PA與平面EAC所成角為θ,則sinθ|cos,n|,即直線PA與平面EAC所成角的正弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ln x-ax(a∈R)(e=2.718 28…是自然對數(shù)的底數(shù)).

(1)判斷f(x)的單調(diào)性;

(2)當(dāng)f(x)<0在(0,+∞)上恒成立時,求a的取值范圍;

(3)證明:當(dāng)x∈(0,+∞)時, (1+x) <e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是某企業(yè)2010年至2016年污水凈化量(單位: 噸)的折線圖.

注: 年份代碼1-7分別對應(yīng)年份2010-2016.

(1)由折線圖看出,可用線性回歸模型擬合的關(guān)系,請用相關(guān)系數(shù)加以說明;

(2)建立關(guān)于的回歸方程,預(yù)測年該企業(yè)污水凈化量;

(3)請用數(shù)據(jù)說明回歸方程預(yù)報的效果.

附注: 參考數(shù)據(jù):;

參考公式:相關(guān)系數(shù),回歸方程中斜率和截距的最。

二乘法估汁公式分別為;

反映回歸效果的公式為:,其中越接近于,表示回歸的效果越好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A{x|x26x8<0},

(1)xAxB的充分條件a的取值范圍.

(2)AB,a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù) (a>0),

若存在,使得成立,則實(shí)數(shù)的取值范圍是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時,求函數(shù)在區(qū)間上的最大值與最小值;

2)若在上存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),點(diǎn)軸上,點(diǎn)軸上,且,.

(1)當(dāng)點(diǎn)軸上運(yùn)動時,求點(diǎn)的軌跡的方程;

(2)設(shè)點(diǎn)是軌跡上的動點(diǎn),點(diǎn)軸上,圓內(nèi)切于,求的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究家用轎車在高速公路上的車速情況,交通部門對100名家用轎車駕駛員進(jìn)行調(diào)查,得到其在高速公路上行駛時的平均車速情況為:在55名男性駕駛員中,平均車速超過100km/h的有40人,不超過100km/h的有15人.在45名女性駕駛員中,平均車速超過100km/h的有20人,不超過100km/h的有25人.

(1)完成下面的列聯(lián)表,并判斷是否有99.5%的把握認(rèn)為平均車速超過100km/h的人與性別有關(guān).

平均車速超過

100km/h人數(shù)

平均車速不超過

100km/h人數(shù)

合計

男性駕駛員人數(shù)

女性駕駛員人數(shù)

合計

(2)以上述數(shù)據(jù)樣本來估計總體,現(xiàn)從高速公路上行駛的大量家用轎車中隨機(jī)抽取3輛,記這3輛車中駕駛員為男性且車速超過100km/h的車輛數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列和數(shù)學(xué)期望.

參考公式與數(shù)據(jù): ,其中

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某幾何體的三視圖如圖所示,P是正方形ABCD對角線的交點(diǎn),GPB的中點(diǎn).

(1)根據(jù)三視圖,畫出該幾何體的直觀圖.

(2)在直觀圖中,①證明:PD∥平面AGC;

②證明:平面PBD⊥平面AGC.

查看答案和解析>>

同步練習(xí)冊答案