已知直線a、b、c滿足a∥b,b⊥c,則a與c的關(guān)系是 ( 。
分析:通過直線垂直的定義得到a,c所成的角是90°,利用直線與直線所成角的定義及直線垂直的定義得到a與c的垂直.
解答:解:∵b⊥c
∴b,c 所成的角是90°
∵a∥b
∴a,c所成的角是90°
∴a與c的關(guān)系是垂直
故選:A.
點(diǎn)評(píng):本題考查直線垂直的定義、考查直線與直線所成角的定義,是對(duì)基礎(chǔ)知識(shí)的考查,屬于基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)選做題本題包括A,B,C,D四小題,請(qǐng)選定其中 兩題 作答,每小題10分,共計(jì)20分,
解答時(shí)應(yīng)寫出文字說明,證明過程或演算步驟.
A選修4-1:幾何證明選講
自圓O外一點(diǎn)P引圓的一條切線PA,切點(diǎn)為A,M為PA的中點(diǎn),過點(diǎn)M引圓O的割線交該圓于B、C兩點(diǎn),且∠BMP=100°,∠BPC=40°,求∠MPB的大小.
B選修4-2:矩陣與變換
已知二階矩陣A=
ab
cd
,矩陣A屬于特征值λ1=-1的一個(gè)特征向量為α1=
1
-1
,屬于特征值λ2=4的一個(gè)特征向量為α2=
3
2
.求矩陣A.
C選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為
x=2cosα
y=sinα
(α為參數(shù))
.以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ-
π
4
)=2
2
.點(diǎn)
P為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l距離的最大值.
D選修4-5:不等式選講
若正數(shù)a,b,c滿足a+b+c=1,求
1
3a+2
+
1
3b+2
+
1
3c+2
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=ax+b,y=bx+a(ab≠0,a≠b),則它們的圖形可能的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

填空題
(1)已知
cos2x
sin(x+
π
4
)
=
4
3
,則sin2x的值為
1
9
1
9

(2)已知定義在區(qū)間[0,
2
]
上的函數(shù)y=f(x)的圖象關(guān)于直線x=
4
對(duì)稱,當(dāng)x≥
4
時(shí),f(x)=cosx,如果關(guān)于x的方程f(x)=a有四個(gè)不同的解,則實(shí)數(shù)a的取值范圍為
(-1,-
2
2
)
(-1,-
2
2
)


(3)設(shè)向量
a
,
b
,
c
滿足
a
+
b
+
c
=
0
,(
a
-
b
)⊥
c
,
a
b
,若|
a
|=1
,則|
a
|2+|
b
|2+|
c
|2
的值是
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三題中任選兩題作答
(1)(2011年江蘇高考)已知矩陣A=
11
21
,向量β=
1
2
,求向量α,使得A2α=β
(2)(2011年山西六校?迹┮灾苯亲鴺(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,已知點(diǎn)P的直角坐標(biāo)為(1,-5),點(diǎn)M的極坐標(biāo)為(4,
π
2
)
,若直線l過點(diǎn)P,且傾斜角為
π
3
,圓C以M為圓心、4為半徑.
①求直線l的參數(shù)方程和圓C的極坐標(biāo)方程;  ②試判定直線l和圓C的位置關(guān)系.
(3)若正數(shù)a,b,c滿足a+b+c=1,求
1
3a+2
+
1
3b+2
+
1
3c+2
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•徐州模擬)本題包括A、B、C、D四小題,請(qǐng)選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,
若多做,則按作答的前兩題評(píng)分.解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,半徑分別為R,r(R>r>0)的兩圓⊙O,⊙O1內(nèi)切于點(diǎn)T,P是外圓⊙O上任意一點(diǎn),連PT交⊙O1于點(diǎn)M,PN與內(nèi)圓⊙O1相切,切點(diǎn)為N.求證:PN:PM為定值.
B.選修4-2:矩陣與變換
已知矩陣M=
21
34

(1)求矩陣M的逆矩陣;
(2)求矩陣M的特征值及特征向量;
C.選修4-2:矩陣與變換
在平面直角坐標(biāo)系x0y中,求圓C的參數(shù)方程為
x=-1+rcosθ
y=rsinθ
為參數(shù)r>0),以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ+
π
4
)=2
2
.若直線l與圓C相切,求r的值.
D.選修4-5:不等式選講
已知實(shí)數(shù)a,b,c滿足a>b>c,且a+b+c=1,a2+b2+c2=1,求證:1<a+b<
4
3

查看答案和解析>>

同步練習(xí)冊(cè)答案