【題目】過(guò)拋物線的焦點(diǎn)的直線交拋物線于兩點(diǎn),拋物線在處的切線交于.

(1)求證:

(2)設(shè),當(dāng)時(shí),求的面積的最小值.

【答案】(1)見證明;(2)

【解析】

1)設(shè)直線的方程為,代入拋物線方程中,根據(jù)韋達(dá)定理和直線的斜率公式,以及導(dǎo)數(shù)的幾何意義,可求出點(diǎn)E的坐標(biāo),根據(jù)斜率的關(guān)系即可證明;(2)根據(jù)向量結(jié)合韋達(dá)定理可得,再根據(jù)弦長(zhǎng)公式求三角形的面積公式表示出,根據(jù)函數(shù)的性質(zhì)即可求出最小值.

(1)顯然斜率存在,設(shè)直線的方程

代入拋物線方程中,得

設(shè),由韋達(dá)定理得到

,∴,∴直線的斜率為

易知切線方程,切線的方程

當(dāng)時(shí),聯(lián)立求得:,故

. ,∴,

又當(dāng)時(shí),顯然有.

所以.

(2)由,得,結(jié)合韋達(dá)定理,

,從而,

,

,

由于在區(qū)間上為減函數(shù),

因此當(dāng)有最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知非常數(shù)的整系數(shù)多項(xiàng)式滿足.①證明:對(duì)所有正整數(shù)至少有五個(gè)不同的質(zhì)因數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】祖暅?zhǔn)俏覈?guó)古代的偉大科學(xué)家,他在5世紀(jì)末提出祖暅:“冪勢(shì)即同,則積不容異”,意思是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平面的任意一個(gè)平面所截,若截面面積都相等,則這兩個(gè)幾何體的體積相等. 祖暅原理常用來(lái)由已知幾何體的體積推導(dǎo)未知幾何體的體積,例如由圓錐和圓柱的的體積推導(dǎo)半球體的體積,其示意圖如圖所示,其中圖(1)是一個(gè)半徑為R的半球體,圖(2)是從圓柱中挖去一個(gè)圓錐所得到的幾何體. (圓柱和圓錐的底面半徑和高均為R)

利用類似的方法,可以計(jì)算拋物體的體積:在x-O-y坐標(biāo)系中,設(shè)拋物線C的方程為y=1-x2 (-1x1),將曲線C圍繞y軸旋轉(zhuǎn),得到的旋轉(zhuǎn)體稱為拋物體. 利用祖暅原理可計(jì)算得該拋物體的體積為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)拋物線的焦點(diǎn)作直線與拋物線交于點(diǎn)

(1)求證不是直角三角形

(2)當(dāng)的斜率為時(shí),拋物線上是否存在點(diǎn),使為直角三角形若存在,求出所有的點(diǎn)若不存在,說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)R).

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)若對(duì)任意實(shí)數(shù),當(dāng)時(shí),函數(shù)的最大值為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】的方格表中的某些小方格染黑,使得不存在由三個(gè)黑色小方格構(gòu)成的共四種情形.求最多有多少個(gè)小方格被染色?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】第35屆牡丹花會(huì)期間,我班有5名學(xué)生參加志愿者服務(wù),服務(wù)場(chǎng)所是王城公園和牡丹公園.

(1)若學(xué)生甲和乙必須在同一個(gè)公園,且甲和丙不能在同一個(gè)公園,則共有多少種不同的分配方案?

(2)每名學(xué)生都被隨機(jī)分配到其中的一個(gè)公園,設(shè)分別表示5名學(xué)生分配到王城公園和牡丹公園的人數(shù),記,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)直線與直線交于P點(diǎn).

)當(dāng)直線過(guò)P點(diǎn),且與直線平行時(shí),求直線的方程.

)當(dāng)直線過(guò)P點(diǎn),且原點(diǎn)O到直線的距離為1時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為且橢圓上存在一點(diǎn),滿足.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知分別是橢圓的左、右頂點(diǎn),過(guò)的直線交橢圓兩點(diǎn),記直線的交點(diǎn)為,是否存在一條定直線,使點(diǎn)恒在直線上?

查看答案和解析>>

同步練習(xí)冊(cè)答案