精英家教網 > 高中數學 > 題目詳情

已知雙曲線C的左、右焦點分別為F1F2,P為雙曲線C的右支上一點,且|PF2|=|F1F2|,則ΔPF1F2的面積等于             (   )

  A.24      B.36       C.48     D.96

 

【答案】

C

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源:2013屆度黑龍江大慶實驗中學高二上學期期末考試文科數學試卷 題型:選擇題

已知雙曲線C的左、右焦點分別為F1、F2,P為雙曲線C的右支上一點,且|PF2|=|F1F2|,則ΔPF1F2的面積等于(    )

A.24      B.36       C.48    D.96

 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知雙曲線C:數學公式的左、右焦點分別為F1,F2,離心率為e.直線l:y=ex+a與x軸、y軸分別交于A,B兩點.
(1)求證:直線l與雙曲線C只有一個公共點;
(2)設直線l與雙曲線C的公共點為M,且數學公式數學公式,證明:λ+e2=1;
(3)設P是點F1關于直線l的對稱點,當△PF1F2為等腰三角形時,求e的值.

查看答案和解析>>

科目:高中數學 來源:2008-2009學年北京市西城區(qū)高二(上)期末數學試卷(文科)(解析版) 題型:解答題

已知雙曲線C:的左、右焦點分別為F1,F2,離心率為e.直線l:y=ex+a與x軸、y軸分別交于A,B兩點.
(1)求證:直線l與雙曲線C只有一個公共點;
(2)設直線l與雙曲線C的公共點為M,且,證明:λ+e2=1;
(3)設P是點F1關于直線l的對稱點,當△PF1F2為等腰三角形時,求e的值.

查看答案和解析>>

科目:高中數學 來源:2008-2009學年北京市西城區(qū)高二(上)期末數學試卷(理科)(解析版) 題型:解答題

已知雙曲線C:的左、右焦點分別為F1,F2,離心率為e.直線l:y=ex+a與x軸、y軸分別交于A,B兩點.
(1)求證:直線l與雙曲線C只有一個公共點;
(2)設直線l與雙曲線C的公共點為M,且,證明:λ+e2=1;
(3)設P是點F1關于直線l的對稱點,當△PF1F2為等腰三角形時,求e的值.

查看答案和解析>>

同步練習冊答案