如圖,A、B、C分別為橢圓
x2
a2
+
y2
b2
=1(a>b>0)的頂點(diǎn)與焦點(diǎn),若∠ABC=90°,
求該橢圓的離心率.
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:運(yùn)用勾股定理及a,b,c的關(guān)系,得到方程,再由離心率公式,得到關(guān)于e的方程,解得即可.
解答: 解:∵∠ABC=90°,∴|BC|2+|AB|2=|AC|2,
∴c2+b2+a2+b2=(a+c)2,
又b2=a2-c2,∴a2-c2-ac=0.
∴e2+e-1=0,
解得離心率e=
5
-1
2
(負(fù)的舍去).
則橢圓的離心率為
5
-1
2
點(diǎn)評(píng):本題考查橢圓的方程和性質(zhì):離心率的求法,考查勾股定理及運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的對(duì)稱中心為原點(diǎn)O,焦點(diǎn)在x軸上,左、右焦點(diǎn)分別為F1,F(xiàn)2,且|F1F2|=2,點(diǎn)(1,
3
2
)在該橢圓上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)F1的直線l與橢圓C相交于A,B兩點(diǎn),若△AF2B的內(nèi)切圓半徑為
3
2
7
,求以F2為圓心且與直線l相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐P-ABC中,AB⊥BC,AB=BC=
1
2
PA,點(diǎn)O,D分別是AC,PC的中點(diǎn),OP⊥底面ABC.
(1)求證OD∥平面PAB;
(2)求直線OD與平面PBC所成角的正弦值的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖①,有一個(gè)長(zhǎng)方形狀的敞口玻璃容器,底面是邊長(zhǎng)為20cm的正方形,高為30cm,內(nèi)有20cm深的溶液,現(xiàn)將此容器傾斜一定角度α(圖②),且傾斜時(shí)底面的一條棱始終在桌面上(圖①,②均為容器的縱截面).
(1)當(dāng)α=30°時(shí),通過(guò)計(jì)算說(shuō)明此溶液是否會(huì)溢出;
(2)現(xiàn)需要倒出不少于3000cm3的溶液,當(dāng)α等于60°時(shí),能實(shí)現(xiàn)要求嗎?通過(guò)計(jì)算說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=|sinx|的圖象與y=kx僅有三個(gè)公共點(diǎn)且橫坐標(biāo)分別為α,β,r(α<β<r)則下列命題正確的是(  )
A、α=0
B、β∈(0,π)
C、r=tanr
D、k=-cosr

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a=9,b=12,A=45°,則△ABC有(  )
A、一解B、兩解
C、無(wú)解D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}滿足a1+2a2=7,且對(duì)任意的n∈N*,點(diǎn)Pn(n,an)都有
PnPn+1
=(1,2),則{an}的前n項(xiàng)和Sn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=log2
2
•log 
2
(2x)•log
2
(2x)
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2
sin(x-
π
12
),x∈R.
(Ⅰ)求f(-
π
12
)的值;
(Ⅱ)若sinθ=-
4
5
,θ∈(
2
,2π),求f(2θ+
π
3
).

查看答案和解析>>

同步練習(xí)冊(cè)答案