若下列方程:,,至少有一個方程有實根,試求實數(shù)的取值范圍.

解:設(shè)三個方程均無實根,則有

解得,即

所以當(dāng)時,三個方程至少有一個方程有實根.

 

【答案】

時,三個方程至少有一個方程有實根.

【解析】

試題分析:設(shè)三個方程均無實根,則有

解得,即

所以當(dāng)時,三個方程至少有一個方程有實根.

考點:本題主要考查方程根的討論,不等式組的解法。

點評:典型題,本解法很好地體現(xiàn)了“正難則反”的解題策略,簡化了解題過程。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題
①若兩直線平行,則兩直線斜率相等.
②動點M至兩定點A,B的距離之比為常數(shù)λ(λ>0且λ≠1).則動點M的軌跡是圓.
③若橢圓
x2
a2
+
y2
b2
=1(a>0,b>0)
的離心率e=
2
2
,則b=c(c為半焦距).
④雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的焦點到漸近線的距離為b.
⑤方程mx2+ny2=1表示的曲線可以是直線、圓、橢圓、雙曲線.
其中正確命題的序號是
②③④⑤
②③④⑤
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省瀘州市古藺中學(xué)高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

下列命題
①若兩直線平行,則兩直線斜率相等.
②動點M至兩定點A,B的距離之比為常數(shù)λ(λ>0且λ≠1).則動點M的軌跡是圓.
③若橢圓的離心率e=,則b=c(c為半焦距).
④雙曲線的焦點到漸近線的距離為b.
⑤方程mx2+ny2=1表示的曲線可以是直線、圓、橢圓、雙曲線.
其中正確命題的序號是    .(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省瀘州市古藺中學(xué)高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

下列命題
①若兩直線平行,則兩直線斜率相等.
②動點M至兩定點A,B的距離之比為常數(shù)λ(λ>0且λ≠1).則動點M的軌跡是圓.
③若橢圓的離心率e=,則b=c(c為半焦距).
④雙曲線的焦點到漸近線的距離為b.
⑤方程mx2+ny2=1表示的曲線可以是直線、圓、橢圓、雙曲線.
其中正確命題的序號是    .(寫出所有正確命題的序號)

查看答案和解析>>

同步練習(xí)冊答案