在極坐標系內(nèi),已知曲線的方程為,以極點為原點,極軸方向為正半軸方向,利用相同單位長度建立平面直角坐標系,曲線的參數(shù)方程為(為參數(shù)).
(1) 求曲線的直角坐標方程以及曲線的普通方程;
(2) 設(shè)點為曲線上的動點,過點作曲線的兩條切線,求這兩條切線所成角余弦值的取值范圍.
(1),;(2)
解析試題分析:本小題主要考查極坐標與參數(shù)方程的相關(guān)知識,具體涉及到極坐標方程與平面直角坐標方程的互化、直線與曲線的位置關(guān)系以及有關(guān)距離等知識內(nèi)容.(1)利用極坐標轉(zhuǎn)化公式直接轉(zhuǎn)化求圓的方程,利用消掉參數(shù)的方法得到直線的普通方程;(2)首先確定兩切線成角最大的情況,借助點到直線的距離和二倍角公式探求余弦值最小,進而得到取值范圍.
試題解析:(1) 對于曲線的方程為,
可化為直角坐標方程,即;
對于曲線的參數(shù)方程為(為參數(shù)),可化為普通方程. (5分)
(2) 過圓心點作直線的垂線,此時兩切線成角最大,即余弦值最小. 則由點到直線的距離公式可知,
,則,因此,
因此兩條切線所成角的余弦值的取值范圍是. (10分)
考點:(1)極坐標方程與平面直角坐標方程的互化;(2)直線與曲線的位置關(guān)系;(3)點到直線的距離.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線C的極坐標方程為,直線的參數(shù)方程為(t為參數(shù),).
(1)把曲線C的極坐標方程化為直角坐標方程,并說明曲線C的形狀;
(2)若直線經(jīng)過點,求直線被曲線C截得的線段AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)),為直線與曲線的公共點. 以原點為極點,軸的正半軸為極軸建立極坐標系.
(Ⅰ)求點的極坐標;
(Ⅱ)將曲線上所有點的縱坐標伸長為原來的倍(橫坐標不變)后得到曲線,過點作直線,若直線被曲線截得的線段長為,求直線的極坐標方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標系中,直線的參數(shù)方程為:(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(Ⅰ)求曲線的平面直角坐標方程;
(Ⅱ)設(shè)直線與曲線交于點,若點的坐標為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標系xOy中,圓C的參數(shù)方程為參數(shù)).以O(shè)為極點,x軸的非負半軸為極軸建立極坐標系.
(Ⅰ)求圓C的極坐標方程;
(Ⅱ)直線的極坐標方程是,射線與圓C的交點為O,P,與直線的交點為Q,求線段PQ的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在極坐標系中,直線的極坐標方程為是上任意一點,點P在射線OM上,且滿足,記點P的軌跡為。
(Ⅰ)求曲線的極坐標方程;
(Ⅱ)求曲線上的點到直線距離的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸建立坐標系.已知點的極坐標為,直線的極坐標方程為,且點在直線上.
(1)求的值及直線的直角坐標方程;
(2)圓c的參數(shù)方程為,(為參數(shù)),試判斷直線與圓的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在極坐標系中,為極點,半徑為2的圓的圓心的極坐標為.
(1)求圓極坐標方程;
(2)在以極點為原點,以極軸為軸正半軸建立的直角坐標系中,直線的參數(shù)方程
為 (為參數(shù)),直線與圓相交于、兩點,已知定點,
求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com