【題目】,已知是以為圓心,以4為半徑的圓上的動(dòng)點(diǎn),所連線段的垂直平分線與線段交于點(diǎn)。

)求點(diǎn)的軌跡的方程;

)已知點(diǎn)坐標(biāo)為(4,0),并且傾斜角為銳角的直線經(jīng)過點(diǎn)并且與曲線相交于兩點(diǎn)

)求證:;

)若,求直線的方程。

【答案】)(i)證明見解析;ii)。

【解析】

試題分析:借助題設(shè)條件運(yùn)用橢圓的定義求解;借助題設(shè)條件運(yùn)用直線與橢圓的位置關(guān)系求解。

試題解析:

)設(shè)則因?yàn)?/span>在線段的垂直平分線上,所以所以。的軌跡為以為焦點(diǎn)的橢圓,其長(zhǎng)半軸為,半焦距為,所以短半軸。所以的方程是

設(shè),,直線的方程為,,。,。

所以。

)因?yàn)?/span>,所以,不妨設(shè)點(diǎn)在第一象限,則,,所以,

所以是方程,即方程的兩個(gè)根,所以,,所以,.又傾斜角為銳角,所以,所以直線的方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020416日,某州所有61個(gè)社區(qū)都有新冠病毒感染確診病例,第二天該州新增這種病例183例.這兩天該州以社區(qū)為單位的這種病例數(shù)的中位數(shù),平均數(shù),眾數(shù),方差和極差5個(gè)特征數(shù)中,一定變化的是______(寫出所有的結(jié)果)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)?jiān)O(shè)計(jì)一份問卷調(diào)查你們班同學(xué)閱讀課外書的情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在點(diǎn)(1,f(1))處的切線為y=1.

(1)求a,b的值;

(2)問是否存在實(shí)數(shù)m,使得當(dāng)x(0,1]時(shí),的最小值為0?若存在求出m的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)。

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),設(shè)函數(shù),若對(duì)于使成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).若圖象上的點(diǎn)處的切線斜率為-4,求的極大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察下表:

1,

2,3,

4,5,6,7,

8,9,10,11,12,13,14,15,

問:1此表第n行的最后一個(gè)數(shù)是多少?

2此表第n行的各個(gè)數(shù)之和是多少?

32008是第幾行的第幾個(gè)數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,公園有一塊邊長(zhǎng)為2的等邊三角形的邊角地,現(xiàn)修成草坪,圖中把草坪分成面積相等的兩部分,上,上.

)設(shè),,求用表示的函數(shù)關(guān)系式;

)如果是灌溉水管,為節(jié)約成本,希望它最短,的位置應(yīng)在哪里?如果是參觀線路,則希望它最長(zhǎng),的位置又應(yīng)在哪里?請(qǐng)予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)某高三學(xué)生在連續(xù)9次數(shù)學(xué)測(cè)試中的成績(jī)(單位:分)進(jìn)行統(tǒng)計(jì)得到如下折線圖。下面關(guān)于這位同學(xué)的數(shù)學(xué)成績(jī)的分析中,正確的共有( )個(gè)。

該同學(xué)的數(shù)學(xué)成績(jī)總的趨勢(shì)是在逐步提高;

該同學(xué)在這連續(xù)九次測(cè)試中的最高分與最低分的差超過40分;

該同學(xué)的數(shù)學(xué)成績(jī)與考試次號(hào)具有比較明顯的線性相關(guān)性,且為正相關(guān)

A.0 B.1

C.2 D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案