科目:高中數(shù)學 來源: 題型:解答題
某公司承建扇環(huán)面形狀的花壇如圖所示,該扇環(huán)面花壇是由以點為圓心的兩個同心圓弧、弧以及兩條線段和圍成的封閉圖形.花壇設(shè)計周長為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米(),圓心角為弧度.
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)在對花壇的邊緣進行裝飾時,已知兩條線段的裝飾費用為4元/米,兩條弧線部分的裝飾費用為9元/米.設(shè)花壇的面積與裝飾總費用的比為,當為何值時,取得最大值?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)的圖象分別與軸相交于兩點,且向量(分別是與軸正半軸同方向的單位向量),又函數(shù).
(1)求的值;
(2)若不等式的解集為,求的值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=lnx-ax2+(2-a)x.
(1)討論f(x)的單調(diào)性;
(2)設(shè)a>0,證明:當0<x<時,f>f;
(3)若函數(shù)y=f(x)的圖象與x軸交于A、B兩點,線段AB中點的橫坐標為x0,證明:<0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)f(x)是定義在R上的奇函數(shù),且對任意實數(shù)x,恒有f(x+2)=-f(x),當x∈[0,2]時,f(x)=2x-x2.
(1)求證:f(x)是周期函數(shù);
(2)當x∈[2,4]時,求f(x)的解析式;
(3)計算f(0)+f(1)+f(2)+…+f(2014)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=ex-e-x(x∈R且e為自然對數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的奇偶性與單調(diào)性;
(2)是否存在實數(shù)t,使不等式f(x-t)+f(x2-t2)≥0對一切x都成立?若存在,求出t;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com