如圖,已知平面,平面,△為等邊三角形,,的中點.

(1)求證:平面
(2)求證:平面平面;
(3)求直線和平面所成角的正弦值.

(1)證  (2)證平面 (3)

解析試題分析:(1)證法一:取的中點,連

的中點,∴
平面平面,
,∴
,∴.               
∴四邊形為平行四邊形,則
平面,平面,
平面.                       
(2)證:∵為等邊三角形,的中點,

平面平面,∴
,故平面.                 
,∴平面
平面
∴平面平面.              
(3)解:在平面內(nèi),過,連
∵平面平面,∴平面
和平面所成的角.               
設(shè),則,
,
R t△中,
∴直線和平面所成角的正弦值為
考點:平面與平面垂直的判定;直線與平面平行的判定;直線與平面所成的角.
點評:本題考查證明線面平行的方法,2個平面垂直的方法,求直線與平面成的角的方法,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐ABCD-PGFE中,底面ABCD是直角梯形,側(cè)棱垂直于底面,AB//DC,∠ABC=45o,DC=1,AB=2,PA=1.

(Ⅰ)求PD與BC所成角的大。
(Ⅱ)求證:BC⊥平面PAC;
(Ⅲ)求二面角A-PC-D的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知直三棱柱的三視圖如圖所示,的中點.

(Ⅰ)求證:∥平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)試問線段上是否存在點,使 角?若存在,確定點位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在如圖所示的幾何體中,面為正方形,面為等腰梯形,,,,.

(1)求證:;
(2)求三棱錐的體積;
(3)線段上是否存在點,使//平面?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖1,四棱錐中,底面,面是直角梯形,為側(cè)棱上一點.該四棱錐的俯視圖和側(cè)(左)視圖如圖2所示.   
(1)證明:平面
(2)線段上是否存在點,使所成角的余弦值為?若存在,找到所有符合要求的點,并求的長;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖(1),是等腰直角三角形,其中分別為的中點,將沿折起,點的位置變?yōu)辄c,已知點在平面上的射影的中點,如圖(2)所示.

(1)求證:;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

邊長為2的正方形ABCD所在平面外有一點P,平面ABCD,,E是PC上的一點.
 
(Ⅰ)求證:AB//平面;
(Ⅱ)求證:平面平面
(Ⅲ)線段為多長時,平面?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在正方體中,的中點.

(1)求證:平面;
(2)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,四面體ABCD中,AB⊥BD、AC⊥CD且AD =3.BD=CD=2.

(1)求證:AD⊥BC;
(2)求二面角B—AC—D的余弦值.

查看答案和解析>>

同步練習冊答案