【題目】在直角坐標(biāo)系中,直線經(jīng)過(guò)點(diǎn),傾斜角為,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系.
(1)寫出直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)設(shè)直線與曲線相交于,兩點(diǎn),求的值.
【答案】(1);;(2).
【解析】
(1)首先根據(jù)直線經(jīng)過(guò)點(diǎn)以及傾斜角為得出直線的直角坐標(biāo)方程,然后根據(jù)直角坐標(biāo)方程與極坐標(biāo)方程的轉(zhuǎn)化得出直線的極坐標(biāo)方程,最后根據(jù)曲線的參數(shù)方程得出曲線的直角坐標(biāo)方程;
(2)本題首先可以根據(jù)直線的直角坐標(biāo)方程得出直線的參數(shù)方程,然后將直線的參數(shù)方程代入曲線中得,最后借助韋達(dá)定理即可得出結(jié)果.
(1)因?yàn)橹本經(jīng)過(guò)點(diǎn),傾斜角為,
所以直線的直角坐標(biāo)方程,
則其極坐標(biāo)方程為,
因?yàn)榍的參數(shù)方程為,
所以曲線的直角坐標(biāo)方程.
(2)因?yàn)橹本的直角坐標(biāo)方程為,
所以直線的參數(shù)方程為(為參數(shù)),
將代入曲線中得,
因?yàn)橹本與曲線相交于、兩點(diǎn),
所以,設(shè)、兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為、
所以,,,,
故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)有教師400人,其中高中教師240人.為了了解該校教師每天課外鍛煉時(shí)間,現(xiàn)利用分層抽樣的方法從該校教師中隨機(jī)抽取了100名教師進(jìn)行調(diào)查,統(tǒng)計(jì)其每天課外鍛煉時(shí)間(所有教師每天課外鍛煉時(shí)間均在分鐘內(nèi)),將統(tǒng)計(jì)數(shù)據(jù)按,,,…,分成6組,制成頻率分布直方圖如下:假設(shè)每位教師每天課外鍛煉時(shí)間相互獨(dú)立,并稱每天鍛煉時(shí)間小于20分鐘為缺乏鍛煉.
(1)試估計(jì)本校教師中缺乏鍛煉的人數(shù);
(2)從全市高中教師中隨機(jī)抽取3人,若表示每天課外鍛煉時(shí)間少于10分鐘的人數(shù),以這60名高中教師每天課外鍛煉時(shí)間的頻率代替每名高中教師每天課外鍛煉時(shí)間發(fā)生的概率,求隨機(jī)變量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若無(wú)窮數(shù)列滿足:存在,對(duì)任意的,都有(為常數(shù)),則稱具有性質(zhì)
(1)若無(wú)窮數(shù)列具有性質(zhì),且,求的值
(2)若無(wú)窮數(shù)列是等差數(shù)列,無(wú)窮數(shù)列是公比為正數(shù)的等比數(shù)列,,,,判斷是否具有性質(zhì),并說(shuō)明理由.
(3)設(shè)無(wú)窮數(shù)列既具有性質(zhì),又具有性質(zhì),其中互質(zhì),求證:數(shù)列具有性質(zhì)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓的參數(shù)方程為(為參數(shù)),與圓關(guān)于直線對(duì)稱的圓為.以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程是.
(1)設(shè)直線與軸和軸的交點(diǎn)分別為,,為圓上的任意一點(diǎn),求的最大值.
(2)過(guò)點(diǎn)且與直線平行的直線交圓于,兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年末,武漢出現(xiàn)新型冠狀病毒(肺炎疫情,并快速席卷我國(guó)其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,目前沒(méi)有特異治療方法.防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無(wú)法明確排除新冠肺炎的發(fā)熱患者和確診患者的密切接觸者等“四類”人員,強(qiáng)化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,某社區(qū)將本社區(qū)的排查工作人員分為,兩個(gè)小組,排查工作期間社區(qū)隨機(jī)抽取了100戶已排查戶,進(jìn)行了對(duì)排查工作態(tài)度是否滿意的電話調(diào)查,根據(jù)調(diào)查結(jié)果統(tǒng)計(jì)后,得到如下的列聯(lián)表.
是否滿意 組別 | 不滿意 | 滿意 | 合計(jì) |
組 | 16 | 34 | 50 |
組 | 2 | 45 | 50 |
合計(jì) | 21 | 79 | 100 |
(1)分別估計(jì)社區(qū)居民對(duì)組、組兩個(gè)排查組的工作態(tài)度滿意的概率;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認(rèn)為“對(duì)社區(qū)排查工作態(tài)度滿意”與“排查工作組別”有關(guān)?
附表:
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)農(nóng)歷的“二十四節(jié)氣”是凝結(jié)著中華民族的智慧與傳統(tǒng)文化的結(jié)晶,“二十四節(jié)氣”歌是以“春、夏、秋、冬”開(kāi)始的四句詩(shī),2016年11月30日,“二十四節(jié)氣”正式被聯(lián)合國(guó)教科文組織列入人類非物質(zhì)文化遺產(chǎn),也被譽(yù)為“中國(guó)的第五大發(fā)明”.某小學(xué)三年級(jí)共有學(xué)生500名,隨機(jī)抽查100名學(xué)生并提問(wèn)“二十四節(jié)氣”歌,只能說(shuō)出春夏兩句的有45人,能說(shuō)出春夏秋三句及其以上的有32人,據(jù)此估計(jì)該校三年級(jí)的500名學(xué)生中,對(duì)“二十四節(jié)氣”歌只能說(shuō)出第一句“春”或一句也說(shuō)不出的大約有( )
A.69人B.84人C.108人D.115人
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A(0,2),B(0,﹣2),動(dòng)點(diǎn)P(x,y)滿足PA,PB的斜率之積為.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)已知直線l:y=kx+m,C的右焦點(diǎn)為F,直線l與C交于M,N兩點(diǎn),若F是△AMN的垂心,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一,城市缺水問(wèn)題較為突出.某市為了節(jié)約生活用水,計(jì)劃在本市試行居民生活用水定額管理(即確定一個(gè)居民月均用水量標(biāo)準(zhǔn):用水量不超過(guò)的部分按照平價(jià)收費(fèi),超過(guò)的部分按照議價(jià)收費(fèi)).為了較為合理地確定出這個(gè)標(biāo)準(zhǔn),通過(guò)抽樣獲得了40位居民某年的月均用水量(單位:噸),按照分組制作了頻率分布直方圖,
(1)從頻率分布直方圖中估計(jì)該40位居民月均用水量的眾數(shù),中位數(shù);
(2)在該樣本中月均用水量少于1噸的居民中隨機(jī)抽取兩人,其中兩人月均用水量都不低于0.5噸的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為4的菱形中, ,點(diǎn)分別是的中點(diǎn), ,沿將翻折到,連接,得到如圖的五棱錐,且
(1)求證: 平面(2)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com