【題目】某工廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術(shù)水平的限制,會(huì)產(chǎn)生一些次品,根據(jù)經(jīng)驗(yàn)知道,其次品率P與日產(chǎn)量x(萬件)之間大體滿足關(guān)系: .(注:次品率=次品數(shù)/生產(chǎn)量,如P=0.1表示每生產(chǎn)10件產(chǎn)品,有1件為次品,其余為合格品).已知每生產(chǎn)1萬件合格的元件可以盈利2萬元,但每生產(chǎn)1萬件次品將虧損1萬元,故廠方希望定出合適的日產(chǎn)量.
(1)試將生產(chǎn)這種儀器的元件每天的盈利額T(萬元)表示為日產(chǎn)量x(萬件)的函數(shù);
(2)當(dāng)日產(chǎn)量x為多少時(shí),可獲得最大利潤(rùn)?
【答案】
(1)解:當(dāng)x≥6時(shí),P= ,則T= x×2﹣ x×1=0.
當(dāng)1≤x<6時(shí),P= ,則T=(1﹣ )x×2﹣( )x×1= .
綜上所述,日盈利額T(萬元)與日產(chǎn)量x(萬件)的函數(shù)關(guān)系為:T=
(2)解:由(1)知,當(dāng)x≥6時(shí),每天的盈利為0.
當(dāng)1≤x<6時(shí),T(x)= =15﹣2[(6﹣x)+ ]≤15﹣12=3,
∴T≤3.
當(dāng)且僅當(dāng)x=3時(shí),T=3.
綜上,當(dāng)日產(chǎn)量為3萬件時(shí),可獲得最大利潤(rùn)3萬元
【解析】(1)每天的贏利為T=日產(chǎn)量(x)×正品率(1﹣P)×2﹣日產(chǎn)量(x)×次品率(P)×1,根據(jù)分段函數(shù)分段研究,整理即可;(2)利用基本不等式求函數(shù)的最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)的定義域?yàn)镽,當(dāng)x<0時(shí),f(x)>1,且對(duì)任意的實(shí)數(shù)x,y∈R,等式f(x)f(y)=f(x+y)成立,若數(shù)列{an}滿足 ,(n∈N*),且a1=f(0),則下列結(jié)論成立的是( )
A.f(a2013)>f(a2016)
B.f(a2014)>f(a2015)
C.f(a2016)<f(a2015)
D.f(a2014)<f(a2016)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè) 與定點(diǎn) 的距離和它到直線 的距離的比是常數(shù),
(1)求點(diǎn) 的軌跡曲線 的方程:
(2)過定點(diǎn) 的直線 交曲線 于 兩點(diǎn),以 三點(diǎn)( 為坐標(biāo)原點(diǎn))為頂點(diǎn)作平行四邊形 ,若點(diǎn) 剛好在曲線 上,求直線 的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正四棱錐(底面為正方形,頂點(diǎn)在底面上的射影是底面的中心)S﹣ABCD的底面邊長(zhǎng)為2,高為2,E為邊BC的中點(diǎn),動(dòng)點(diǎn)P在表面上運(yùn)動(dòng),并且總保持PE⊥AC,則動(dòng)點(diǎn)P的軌跡的周長(zhǎng)為( )
A.
B.
C.3
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)國(guó)家環(huán)保部新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》規(guī)定:居民區(qū)的年平均濃度不得超過35微克/立方米, 的24小時(shí)平均濃度不得超過75微克/立方米.我市環(huán)保局隨機(jī)抽取了一居民區(qū)2016年30天的24小時(shí)平均濃度(單位:微克/立方米)的監(jiān)測(cè)數(shù)據(jù),將這30天的測(cè)量結(jié)果繪制成樣本頻率分布直方圖如圖.
(Ⅰ)求圖中的值;
(Ⅱ)由頻率分布直方圖中估算樣本平均數(shù),并根據(jù)樣本估計(jì)總體的思想,從的年平均濃度考慮,判斷該居民區(qū)的環(huán)境質(zhì)量是否需要改善?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為的圓形紙板內(nèi)有一個(gè)相同圓心的半徑為的小圓,現(xiàn)將半徑為的一枚硬幣拋到此紙板上,使整塊硬幣完全隨機(jī)落在紙板內(nèi),則硬幣與小圓無公共點(diǎn)的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某教育機(jī)構(gòu)隨機(jī)某校20個(gè)班級(jí),調(diào)查各班關(guān)注漢字聽寫大賽的學(xué)生人數(shù),根據(jù)所得數(shù)據(jù)的莖葉圖,以組距為5將數(shù)據(jù)分組成[0,5),[5,10),[10,15),[15,20),[20,25),[25,30),[30,35),[35,40]時(shí),所作的頻率分布直方圖如圖所示,則原始莖葉圖可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個(gè)銷售季度內(nèi),每售出該產(chǎn)品獲利潤(rùn)500元,未售出的產(chǎn)品,每虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場(chǎng)需求量的頻率分布直圖,如圖所示.經(jīng)銷商為下一個(gè)銷售季度購(gòu)進(jìn)了該農(nóng)產(chǎn)品.以()表示下一個(gè)銷售季度內(nèi)的市場(chǎng)需求量, (單位:元)表示下一個(gè)銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤(rùn).
(Ⅰ)將表示為的函數(shù);
(Ⅱ)根據(jù)直方圖估計(jì)利潤(rùn)不少于57000元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知?jiǎng)又本過點(diǎn),且與圓交于、兩點(diǎn).
(1)若直線的斜率為,求的面積;
(2)若直線的斜率為,點(diǎn)是圓上任意一點(diǎn),求的取值范圍;
(3)是否存在一個(gè)定點(diǎn)(不同于點(diǎn)),對(duì)于任意不與軸重合的直線,都有平分,若存在,求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com