【題目】已知函數(shù).

1)討論函數(shù)的極值點個數(shù);

2)若有兩個極值點,試判斷的大小關系并證明.

【答案】1)答案不唯一,具體見解析(2,詳見解析

【解析】

1)由已知令,得,記,則函數(shù)的極值點個數(shù)轉化為函數(shù)y2a的交點個數(shù),再利用導數(shù)得到上是增函數(shù),在上是減函數(shù),且,對a分情況討論,即可得到函數(shù)的極值點個數(shù)情況;
2)由已知令,可得,記,利用導數(shù)得到的單調性,可得,當時,,所以當2個極值點,從而得到,所以,即

解:(1

,得,記,則,

,得;令,得,

上是增函數(shù),在上是減函數(shù),且

∴當時,無解,∴無極值點,

時,有一解,,即,

恒成立,無極值點,

,即時,有兩解,2個極值點,

時,有一解,有一個極值點.

綜上所述:當,無極值點;時,2個極值點;

,1個極值點;

2,,

,則,,

,則,

,由,得,

上是增函數(shù),在上是減函數(shù),

,當時,,

∴當時,

2個極值點,

,

,

,

不妨設,,

上是減函數(shù),

,

,

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖(1),在圓錐內放兩個大小不同且不相切的球,使得它們分別與圓錐的側面、底面相切,用與兩球都相切的平面截圓錐的側面得到截口曲線是橢圓.理由如下:如圖(2),若兩個球分別與截面相切于點,在得到的截口曲線上任取一點,過點作圓錐母線,分別與兩球相切于點,由球與圓的幾何性質,得,,所以,且,由橢圓定義知截口曲線是橢圓,切點為焦點.這個結論在圓柱中也適用,如圖(3),在一個高為,底面半徑為的圓柱體內放球,球與圓柱底面及側面均相切.若一個平面與兩個球均相切,則此平面截圓柱所得的截口曲線也為一個橢圓,則該橢圓的離心率為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)討論的單調性;

2)當時,,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在全球抗擊新冠肺炎疫情期間,我國醫(yī)療物資生產企業(yè)加班加點生產口罩、防護服、消毒水等防疫物品,保障抗疫一線醫(yī)療物資供應,在國際社會上贏得一片贊譽.我國某口罩生產廠商在加大生產的同時.狠抓質量管理,不定時抽查口罩質量,該廠質檢人員從某日所生產的口罩中隨機抽取了100個,將其質量指標值分成以下五組:,,,,得到如下頻率分布直方圖.

1)規(guī)定:口罩的質量指標值越高,說明該口罩質量越好,其中質量指標值低于130的為二級口罩,質量指標值不低于130的為一級口罩.現(xiàn)從樣本口罩中利用分層抽樣的方法隨機抽取8個口罩,再從中抽取3個,記其中一級口罩個數(shù)為,求的分布列及數(shù)學期望;

2)在2020五一勞動節(jié)前,甲,乙兩人計劃同時在該型號口罩的某網(wǎng)絡購物平臺上分別參加兩店各一個訂單秒殺搶購,其中每個訂單由個該型號口罩構成.假定甲、乙兩人在、兩店訂單秒殺成功的概率分別為,,記甲、乙兩人搶購成功的訂單總數(shù)量、口罩總數(shù)量分別為,

①求的分布列及數(shù)學期望;

②求當的數(shù)學期望取最大值時正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面向量,共線的充要條件是(

A.

B.兩向量中至少有一個為零向量

C.λR,

D.存在不全為零的實數(shù)λ1,λ2,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】指數(shù)是用體重公斤數(shù)除以身高米數(shù)的平方得出的數(shù)字,是國際上常用的衡量人體胖瘦程度以及是否健康的一個標準.對于高中男體育特長生而言,當數(shù)值大于或等于20.5時,我們說體重較重,當數(shù)值小于20.5時,我們說體重較輕,身高大于或等于我們說身高較高,身高小于170cm我們說身高較矮.

(Ⅰ)已知某高中共有32名男體育特長生,其身高與指數(shù)的數(shù)據(jù)如散點圖,請根據(jù)所得信息,完成下述列聯(lián)表,并判斷是否有的把握認為男生的身高對指數(shù)有影響.

身高較矮

身高較高

合計

體重較輕

體重較重

合計

(Ⅱ)①從上述32名男體育特長生中隨機選取8名,其身高和體重的數(shù)據(jù)如表所示:

編號

1

2

3

4

5

6

7

8

身高

166

167

160

173

178

169

158

173

體重

57

58

53

61

66

57

50

66

根據(jù)最小二乘法的思想與公式求得線性回歸方程為.利用已經(jīng)求得的線性回歸方程,請完善下列殘差表,并求(解釋變量(身高)對于預報變量(體重)變化的貢獻值)(保留兩位有效數(shù)字);

編號

1

2

3

4

5

6

7

8

體重(kg

57

58

53

61

66

57

50

66

殘差

②通過殘差分析,對于殘差的最大(絕對值)的那組數(shù)據(jù),需要確認在樣本點的采集中是否有人為的錯誤,已知通過重新采集發(fā)現(xiàn),該組數(shù)據(jù)的體重應該為.小明重新根據(jù)最小二乘法的思想與公式,已算出,請在小明所算的基礎上求出男體育特長生的身高與體重的線性回歸方程.

參考數(shù)據(jù):

,,,

參考公式:,,,,

0.10

0.05

0.01

0.005

2.706

3.811

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義域為的偶函數(shù),對,有,且當時,,函數(shù).現(xiàn)給出以下命題:①是周期函數(shù);②的圖象關于直線對稱;③當時,內有一個零點;④當時,上至少有六個零.其中正確命題的序號為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】按照水果市場的需要等因素,水果種植戶把某種成熟后的水果按其直徑的大小分為不同等級.某商家計劃從該種植戶那里購進一批這種水果銷售.為了了解這種水果的質量等級情況,現(xiàn)隨機抽取了100個這種水果,統(tǒng)計得到如下直徑分布表(單位:mm):

d

等級

三級品

二級品

一級品

特級品

特級品

頻數(shù)

1

m

29

n

7

用分層抽樣的方法從其中的一級品和特級品共抽取6個,其中一級品2.

1)估計這批水果中特級品的比例;

2)已知樣本中這批水果不按等級混裝的話20個約1斤,該種植戶有20000斤這種水果待售,商家提出兩種收購方案:

方案A:以6.5/斤收購;

方案B:以級別分裝收購,每袋20個,特級品8/袋,一級品5/袋,二級品4/袋,三級品3/.

用樣本的頻率分布估計總體分布,問哪個方案種植戶的收益更高?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】請從下面三個條件中任選一個,補充在下面的橫線上,并解答.

的面積為

中,內角A,BC所對的邊分別為a,b,c,已知bc=2cosA=,

1)求a

2)求的值.

查看答案和解析>>

同步練習冊答案