(本小題8分) 如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側面PAD⊥底面ABCD,
若F,E分別為PC,BD的中點,
求證:
(l)EF∥平面PAD;
(2)平面PDC⊥平面PAD
見解析。
【解析】本試題主要是考查了線面平行和面面垂直的證明的綜合運用。
(1)利用線線平行得到線面平行,結合判定定理,關鍵是得到EF∥PA
(2)要證明面面垂直關鍵是要先證明線面垂直,結合判定定理得到結論。
證明:(1)連結AC,∵ABCD是正方形,∴E為BD與AC的交點,
∵F,E分別為PC,AC的中點 ∴EF∥PA …………2分
∵PA在面PAD內,EF在面PAD外,∴EF∥平面PAD …………4分
(2)∵ABCD是正方形 ∴CD⊥AD
又∵面PAD與面ABCD的交線為AD , 面PAD⊥面ABCD
∴CD⊥面PAD…………6分
又∵CD在面PDC內,∴面PDC⊥面PAD…………8分
科目:高中數(shù)學 來源:2010年浙江省杭州市七校高二上學期期中考試數(shù)學理卷 題型:解答題
(本小題8分)
如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直,EF//AC,AB=,CE=EF=1,.
(1)求證:AF//平面BDE;
(2)求異面直線AB與DE所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年浙江省杭州市七校高二上學期期中考試數(shù)學文卷 題型:解答題
(本小題8分)
如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直. EF//AC,AB=,CE=EF=1,.
(1)求證:AF//平面BDE;
(2)求異面直線AB與DE所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011年甘肅省高二第二學期期中考試數(shù)學 題型:解答題
(文)(本小題8分)
如圖,在四棱錐中,平面,,,,
(1)求證:;
(2)求點到平面的距離
證明:(1)平面,
又
平面 (4分)
(2)設點到平面的距離為,
,,
求得即點到平面的距離為 (8分)
(其它方法可參照上述評分標準給分)
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011年甘肅省高二第二學期期中考試數(shù)學 題型:解答題
(理)(本小題8分)如圖,在四棱錐中,底面是矩形, 平面,,,以的中點為球心、為直徑的球面交于點.
(1) 求證:平面平面;
(2)求點到平面的距離.
證明:(1)由題意,在以為直徑的球面上,則
平面,則
又,平面,
∴,
平面,
∴平面平面. (3分)
(2)∵是的中點,則點到平面的距離等于點到平面的距離的一半,由(1)知,平面于,則線段的長就是點到平面的距離
∵在中,
∴為的中點, (7分)
則點到平面的距離為 (8分)
(其它方法可參照上述評分標準給分)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com