P為△ABC所在平面外一點,O為P在平面ABC內(nèi)的射影.
(1)若P到△ABC三邊距離相等,且O在△ABC的內(nèi)部,則O是△ABC的________心;
(2)若PA⊥BC,PB⊥AC,則O是△ABC的________心;
(3)若PA,PB,PC與底面所成的角相等,則O是△ABC的________心.
(1)內(nèi)(2)垂(3)外
(1)P到△ABC三邊距離相等,且O在△ABC的內(nèi)部,可知O到△ABC三邊距離相等,即O是△ABC的內(nèi)心;(2)由PO⊥平面ABC且BC平面ABC,得PO⊥BC,又PA⊥BC,PO與PA是平面POA內(nèi)兩條相交直線,所以BC⊥平面POA,從而BC⊥AO.同理AC⊥BO,所以O(shè)是△ABC的垂心;由PA、PB、PC與底面所成的角相等,易得Rt△POA≌Rt△POB≌Rt△POC,從而OA=OB=OC,所以O(shè)是△ABC的外心.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在中,,斜邊可以通過 以直線為軸旋轉(zhuǎn)得到,且二面角是直二面角.動點在斜邊上.

(1)求證:平面平面;
(2)求與平面所成角的最大角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正三棱柱ABCDEF中,AB=2,AD=1.P是CF的延長線上一點,F(xiàn)P=t.過A、B、P三點的平面交FD于M,交FE于N.

(1)求證:MN∥平面CDE;
(2)當平面PAB⊥平面CDE時,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直三棱柱ABCA1B1C1中,已知∠ACB=90°,M為A1B與AB1的交點,N為棱B1C1的中點.
 
(1)求證:MN∥平面AA1C1C;
(2)若AC=AA1,求證:MN⊥平面A1BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在正三棱柱ABCA1B1C1中,點D是BC的中點,BC=BB1.
 
(1)若P是CC1上任一點,求證:AP不可能與平面BCC1B1垂直;
(2)試在棱CC1上找一點M,使MB⊥AB1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABEF和ABCD都是直角梯形,∠BAD=∠FAB=90°,BC∥=AD,BE∥=FA,G、H分別為FA、FD的中點.
 
(1)證明:四邊形BCHG是平行四邊形.
(2)C、D、F、E四點是否共面?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)m、n是平面α外的兩條直線,給出三個論斷:
①m∥n;②m∥α;③n∥α.以其中的兩個為條件,余下的一個為結(jié)論,構(gòu)造三個命題,寫出你認為正確的一個命題:________.(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線l上有兩點與平面α的距離相等,則直線l與平面α的位置關(guān)系是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線m,n和平面α,β滿足m⊥n,m⊥α,α⊥β,則(  )
A.n⊥βB.n∥β
C.n⊥αD.n∥α或n?α

查看答案和解析>>

同步練習(xí)冊答案