在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為為參數(shù))曲線C2的參數(shù)方程為,為參數(shù))在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線l:θ=與C1,C2各有一個(gè)交點(diǎn).當(dāng)=0時(shí),這兩個(gè)交點(diǎn)間的距離為2,當(dāng)=時(shí),這兩個(gè)交點(diǎn)重合.
(I)分別說明C1,C2是什么曲線,并求出a與b的值;
(II)設(shè)當(dāng)=時(shí),l與C1,C2的交點(diǎn)分別為A1,B1,當(dāng)=-時(shí),l與C1,C2的交點(diǎn)為A2,B2,求四邊形A1A2B2B1的面積.

(1)a=3,b=1。
(2)四邊形的面積為

解析試題分析:(1)C1是圓,C2是橢圓
當(dāng)時(shí),射線l與C1,C2的交點(diǎn)的直角坐標(biāo)分別是(1,0)(a,0),因?yàn)閮牲c(diǎn)間的距離為2,所以a=3
當(dāng)時(shí),射線l與C1,C2的交點(diǎn)的直角坐標(biāo)分別是(0,1)(0,b),因?yàn)閮牲c(diǎn)重合,所以b=1
(2)C1,C2的普通方程為
當(dāng)時(shí),射線l與C1的交點(diǎn)的橫坐標(biāo)為,與的交點(diǎn)的橫坐標(biāo)為
當(dāng)時(shí),射線l與C1,C2的兩個(gè)交點(diǎn)分別與關(guān)于x軸對稱,因此四邊形為梯形。故四邊形的面積為
考點(diǎn):極坐標(biāo)方程、參數(shù)方程與直角坐標(biāo)方程的互化,面積計(jì)算。
點(diǎn)評:中檔題,利用極坐標(biāo)、直角坐標(biāo)轉(zhuǎn)化公式。。參數(shù)方程化為普通方程,常用的“消參”方法有,代入消參、加減消參、平方關(guān)系消參等。確定四邊形的面積,要注意發(fā)現(xiàn)其幾何特征,探尋計(jì)算方法。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

求圓被直線(是參數(shù))截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在極坐標(biāo)系中,已知圓的圓心,半徑 
(Ⅰ)求圓的極坐標(biāo)方程;
(Ⅱ)若,直線的參數(shù)方程為為參數(shù)),直線交圓兩點(diǎn),求弦長的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在極坐標(biāo)中,已知圓經(jīng)過點(diǎn),圓心為直線與極軸的交點(diǎn),求圓的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線的極坐標(biāo)方程是,直線的參數(shù)方程是(為參數(shù)).
(Ⅰ)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與軸的交點(diǎn)是,是曲線上一動點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在極坐標(biāo)系中,已知點(diǎn)P為圓ρ2+2ρsinθ﹣7=0上任一點(diǎn).求點(diǎn)P到直線ρcosθ+ρsinθ﹣7=0的距離的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在極坐標(biāo)中,已知圓經(jīng)過點(diǎn),圓心為直線與極軸的交點(diǎn),求圓的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的極坐標(biāo)方程為,圓的參數(shù)方程為
(其中為參數(shù)).
(Ⅰ)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)求圓上的點(diǎn)到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在極坐標(biāo)系中,圓C的方程為ρ=2 sin ,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為 (t為參數(shù)),判斷直線l和圓C的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案