【題目】已知點(diǎn)A(x1 , f(x1)),B(x2 , f(x2))是函數(shù)f(x)=2sin(ωx+φ)(ω>0,﹣ <φ<0)圖象上的任意兩點(diǎn),且角φ的終邊經(jīng)過(guò)點(diǎn)P(1,﹣ ),若|f(x1)﹣f(x2)|=4時(shí),|x1﹣x2|的最小值為
(1)求函數(shù)f(x)的解析式;
(2)若方程3[f(x)]2﹣f(x)+m=0在x∈( , )內(nèi)有兩個(gè)不同的解,求實(shí)數(shù)m的取值范圍.
【答案】
(1)解:角φ的終邊經(jīng)過(guò)點(diǎn)P(1,﹣ ),tanφ=﹣ ,∵﹣ <φ<0,∴φ=﹣ .
由|f(x1)﹣f(x2)|=4時(shí),|x1﹣x2|的最小值為 ,得T= ,即 = ,∴ω=3.
∴f(x)=2sin(3x﹣ )
(2)解:∵x∈( , ),
∴3x﹣ ∈(0,π),
∴0<sin(3x﹣ )≤1.設(shè)f(x)=t,
問(wèn)題等價(jià)于方程3t2﹣t+m=0在(0,2)僅有一根或有兩個(gè)相等的根.
∵﹣m=3t2﹣t,t∈(0,2).作出曲線C:y=3t2﹣t,t∈(0,2)與直線l:y=﹣m的圖象.
∵t= 時(shí),y=﹣ ;t=0時(shí),y=0;t=2時(shí),y=10.
∴當(dāng)﹣m=﹣ 或0≤﹣m<10時(shí),直線l與曲線C有且只有一個(gè)公共點(diǎn).
∴m的取值范圍是:m= 或﹣10<m≤0
【解析】(1)由題意,先求tanφ=﹣ ,根據(jù)φ的范圍,可求φ的值,再求出函數(shù)的周期,再利用周期公式求出ω的值,從而可求函數(shù)解析式.(2)由x∈( , ),可得0<sin(3x﹣ )≤1.設(shè)f(x)=t,問(wèn)題等價(jià)于方程3t2﹣t+m=0在(0,2)僅有一根或有兩個(gè)相等的根,作出曲線C:y=3t2﹣t,t∈(0,2)與直線l:y=﹣m的圖象,討論即可得解m的求值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合A={x|x2+2x﹣3<0},集合B={x||x+a|<1}.
(1)若a=3,求A∪B;
(2)設(shè)命題p:x∈A,命題q:x∈B,若p是q成立的必要不充分條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線1通過(guò)點(diǎn)P(1,3)且與兩坐標(biāo)軸的正半軸交于A、B兩點(diǎn).
(1)直線1與兩坐標(biāo)軸所圍成的三角形面積為6,求直線1的方程;
(2)求OA+OB的最小值;
(3)求PAPB的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知方程(x2﹣2x+m)(x2﹣2x+n)=0的四個(gè)根組成一個(gè)首項(xiàng)為 的等差數(shù)列,則|m﹣n|等于( )
A.1
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=﹣ sin(2x+ )+2,求:
(1)f(x)的最小正周期及對(duì)稱(chēng)軸方程;
(2)f(x)的單調(diào)遞增區(qū)間;
(3)若方程f(x)﹣m+1=0在x∈[0, ]上有解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著網(wǎng)絡(luò)營(yíng)銷(xiāo)和電子商務(wù)的興起,人們的購(gòu)物方式更具多樣化,某調(diào)查機(jī)構(gòu)隨機(jī)抽取10名購(gòu)物者進(jìn)行采訪,5名男性購(gòu)物者中有3名傾向于選擇網(wǎng)購(gòu),2名傾向于選擇實(shí)體店,5名女性購(gòu)物者中有2名傾向于選擇網(wǎng)購(gòu),3名傾向于選擇實(shí)體店.
(1)若從10名購(gòu)物者中隨機(jī)抽取2名,其中男、女各一名,求至少1名傾向于選擇實(shí)體店的概率;
(2)若從這10名購(gòu)物者中隨機(jī)抽取3名,設(shè)X表示抽到傾向于選擇網(wǎng)購(gòu)的男性購(gòu)物者的人數(shù),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某城市有一條公路正西方AO通過(guò)市中心O后轉(zhuǎn)向北偏東α角方向的OB,位于該市的某大學(xué)M與市中心O的距離OM=3 km,且∠AOM=β,現(xiàn)要修筑一條鐵路L,L在OA上設(shè)一站A,在OB上設(shè)一站B,鐵路在AB部分為直線段,且經(jīng)過(guò)大學(xué)M,其中tanα=2,cosβ= ,AO=15km.
(1)求大學(xué)M在站A的距離AM;
(2)求鐵路AB段的長(zhǎng)AB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,S表示△ABC的面積,若acosB+bcosA=csinC,S= (b2+c2﹣a2),則∠B=( )
A.90°
B.60°
C.45°
D.30°
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角三角形中, , , , 為線段上一點(diǎn),且,沿邊上的中線將折起到的位置.
(Ⅰ)求證: ;
(Ⅱ)當(dāng)平面平面時(shí),求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com