設(shè)命題P:函數(shù)y=loga(x+1)在(0,+∞)為減函數(shù).命題Q:曲線y=x2+(2a-3)x+1與x軸有兩個(gè)不同的交點(diǎn).若“P且Q”為假,“P或Q”為真,求a的范圍.
分析:當(dāng)P為真時(shí),0<a<1.當(dāng)Q為真時(shí),a>
5
2
或a<
1
2
.當(dāng)P為真、Q為假時(shí),求出a的范圍;當(dāng)P為假、Q為真時(shí),
求出a的范圍,把這幾個(gè)a的范圍取并集即得所求.
解答:解:當(dāng)P為真時(shí),0<a<1.當(dāng)Q為真時(shí),△=(2a-3)2-4>0,即 a>
5
2
a<
1
2

∵“P且Q”為假,“P或Q”為真,∴P與Q必是一真一假.
當(dāng)P為真、Q為假時(shí),則有  
0<a<1
 
1
2
≤a≤
5
2
,解得
1
2
≤a<1

當(dāng)P為假、Q為真時(shí),則有 
a≥1或a≤0
 
a>
5
2
, 或a<
1
2
,解得a>
5
2
 或a≤0.
綜上可得
1
2
≤a<1
或a≤0或a>
5
2
點(diǎn)評(píng):本題主要考查對(duì)數(shù)函數(shù)的單調(diào)性和特殊點(diǎn),復(fù)合命題的真假,二次函數(shù)的性質(zhì),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x,x∈P
-x,x∈M
其中集合P,M是非空數(shù)集.設(shè).f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}
(I)若 P=[l,3],M=(-∞,-2],求f(P)∪f(wàn)(M);
(II)若P∩M=φ,a函數(shù)f(x)是定義在R上的單調(diào)遞增函數(shù),求集合P,M
(III)判斷命題“若P∪M≠R,則.f(P)∪f(wàn)(M)≠R”的真假,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

現(xiàn)有下面四個(gè)命題:
①曲線y=-x2+2x+4在點(diǎn)(1,5)處的切線的傾斜角為45°;
②已知直線l,m,平面α,β,若l⊥α,m?β,l⊥m,則α∥β;
③設(shè)函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0),若f(1)=0,
則f(x+1)一定是奇函數(shù);
④如果點(diǎn)P到點(diǎn)A(
1
2
,0),B(
1
2
,2)
及直線x=-
1
2
的距離相等,那么滿足條件的點(diǎn)P有且只有1個(gè).
其中正確命題的序號(hào)是
 
.(寫(xiě)出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

現(xiàn)有下面四個(gè)命題:
①曲線y=-x2+2x+4在點(diǎn)(1,5)處的切線的傾斜角為45°;
②已知直線l,m,平面α,β,若l⊥α,m?β,l⊥m,則α∥β;
③設(shè)函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0),若f(1)=0,
則f(x+1)一定是奇函數(shù);
④如果點(diǎn)P到點(diǎn)數(shù)學(xué)公式及直線數(shù)學(xué)公式的距離相等,那么滿足條件的點(diǎn)P有且只有1個(gè).
其中正確命題的序號(hào)是________.(寫(xiě)出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=
x,x∈P
-x,x∈M
其中集合P,M是非空數(shù)集.設(shè).f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}
(I)若 P=[l,3],M=(-∞,-2],求f(P)∪f(wàn)(M);
(II)若P∩M=φ,a函數(shù)f(x)是定義在R上的單調(diào)遞增函數(shù),求集合P,M
(III)判斷命題“若P∪M≠R,則.f(P)∪f(wàn)(M)≠R”的真假,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案