【題目】已知函數(shù)f(x)的定義域是{x|x≠0},對定義域內的任意,都有f(·)=f()+f(),且當x>1時,f(x)>0,f(2)=1.
(1)證明:(x)是偶函數(shù);
(2)證明:(x)在(0,+∞)上是增函數(shù);
(3)解不等式(2-1)<2.
【答案】(1)見解析;(2)見解析;(3)
【解析】
(1)令,求得,再由,求得,進而得出,即可得到證明;
(2)根據(jù)函數(shù)的單調性的定義,即可證得函數(shù)的為單調遞增函數(shù);
(3)由(1)(2)可把不等式 轉化為,進而得,即可求解.
(1)證明 令x1=x2=1,得f(1)=2f(1),
∴f(1)=0.令x1=x2=-1,得f(-1)=0,
∴f(-x)=f(-1·x)=f(-1)+f(x)=f(x).
∴f(x)是偶函數(shù).
(2)證明 設x2>x1>0,
則f(x2)-f(x1)=f(x1·)-f(x1)
=f(x1)+f()-f(x1)=f(),
∵x2>x1>0,∴>1.
∴f()>0,即f(x2)-f(x1)>0.
∴f(x2)>f(x1).
∴f(x)在(0,+∞)上是增函數(shù).
(3)解 ∵f(2)=1,∴f(4)=f(2)+f(2)=2.
又∵f(x)是偶函數(shù),
∴不等式f(2x2-1)<2可化為f(|2x2-1|)<f(4).
又∵函數(shù)f(x)在(0,+∞)上是增函數(shù),∴|2x2-1|<4.
解得- <x<,即不等式的解集為(-,).
科目:高中數(shù)學 來源: 題型:
【題目】為了得到函數(shù)y=sin2x的圖象,只需把函數(shù)y=sin(2x﹣ )的圖象( )
A.向左平移 個單位長度
B.向右平移 個單位長度
C.向左平移 個單位長度
D.向右平移 個單位長度
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在海岸A處,發(fā)現(xiàn)南偏東45°方向距A為(2-2)海里的B處有一艘走私船,在A處正北方向,距A為海里的C處的緝私船立即奉命以10海里/時的速度追截走私船.
(1)剛發(fā)現(xiàn)走私船時,求兩船的距離;
(2)若走私船正以10海里/時的速度從B處向南偏東75°方向逃竄,問緝私船沿什么方向能最快追上走私船?并求出所需要的時間(精確到分鐘,參考數(shù)據(jù):≈1.4,≈2.5).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱柱中, 平面, , , 為的中點.
(1)求四棱錐的體積;
(2)求證: ;
(3)判斷線段上是否存在一點 (與點不重合),使得四點共面? (結論不要求證明)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在中,角A,B,C的對邊分別為a,b,c,R表示的外接圓半徑.
(Ⅰ)如圖,在以O圓心、半徑為2的O中,BC和BA是O的弦,其中,求弦AB的長;
(Ⅱ)在中,若是鈍角,求證:;
(Ⅲ)給定三個正實數(shù)a、b、R,其中,問:a、b、R滿足怎樣的關系時,以a、b為邊長,R為外接圓半徑的不存在、存在一個或存在兩個(全等的三角形算作同一個)?在存在的情況下,用a、b、R表示c.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓經(jīng)過點,且與橢圓 有相同的焦點.
(1)求橢圓的標準方程;
(2)若動直線與橢圓有且只有一個公共點,且與直線交于點,問:以線段為直徑的圓是否經(jīng)過一定點?若存在,求出定點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】求使下列函數(shù)取得最大值、最小值的自變量x的集合,并分別寫出最大值、最小值:
(1)y=3-2sin x;
(2)y=sin.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sinx,若存在x1 , x2 , …,xn滿足0≤x1<x2<…<xn≤nπ,n∈N+ , 且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(xm﹣1)﹣f(xm)|=12,(m≥2,m∈N+),當m取最小值時,n的最小值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的最小值為1,且.
(1)求的解析式.
(2)在區(qū)間[-1,1]上,的圖象恒在的圖象上方,試確定實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com