【題目】袋中裝有偶數(shù)個(gè)球,其中紅球、黑球各占一半,甲、乙、丙是三個(gè)空盒.每次從袋中任取兩個(gè)球,將其中一個(gè)球放入甲盒,如果這個(gè)球是紅球,就將另一個(gè)球放入乙盒,否則就放入丙盒.重復(fù)上述過程,直到袋中所有球都放入盒中,則( )

A. 乙盒中紅球與丙盒中黑球一樣多

B. 乙盒中黑球不多于丙盒中黑球

C. 乙盒中紅球不多于丙盒中紅球

D. 乙盒中黑球與丙盒中紅球一樣多

【答案】A

【解析】由題可知甲盒中紅球的個(gè)數(shù)等于乙盒中球的個(gè)數(shù),黑球的個(gè)數(shù)等于丙盒中球的個(gè)數(shù),不妨設(shè)甲盒中紅球有個(gè),黑球個(gè),則所有的球共個(gè),紅球、黑球各個(gè),所以乙、丙兩盒中共有紅球個(gè),黑球個(gè),設(shè)乙盒中紅球個(gè),則黑球有個(gè),丙盒中紅球有個(gè),黑球個(gè),即乙盒中紅球與丙盒中黑球一樣多.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A={x|x2+8x=0},B={x|x2+2(a+2)xa2-4=0},其中a∈R.如果ABB,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】同時(shí)擲兩個(gè)骰子,計(jì)算:

(1)一共有多少種不同的結(jié)果?

(2)其中向上的點(diǎn)數(shù)之和是5的結(jié)果有多少種?

(3)向上的點(diǎn)數(shù)之和是5的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的前3項(xiàng)和為6,前8項(xiàng)和為-4.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)bn=(4-an)qn-1 (q≠0,n∈N*),求數(shù)列{bn}的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

)求函數(shù)的最小值;

)設(shè)),討論函數(shù)的單調(diào)性;

)若斜率為的直線與曲線交于,兩點(diǎn),其中,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的方程為,兩焦點(diǎn),點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)如圖,動(dòng)直線與橢圓有且僅有一個(gè)公共點(diǎn),點(diǎn)、是直線上的兩點(diǎn),且.求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)),當(dāng)時(shí),曲線上對應(yīng)的點(diǎn)為.以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(I)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(II)設(shè)曲線的公共點(diǎn)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)).以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系曲線的極坐標(biāo)方程為

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)求曲線公共弦的長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國際奧委會(huì)將于2017年9月15日在秘魯利馬召開130次會(huì)議決定2024年第33屆奧運(yùn)會(huì)舉辦地。目前德國漢堡、美國波士頓等申辦城市因市民擔(dān)心賽事費(fèi)用超支而相繼退出。某機(jī)構(gòu)為調(diào)查我國公民對申辦奧運(yùn)會(huì)的態(tài)度,選了某小區(qū)的100位居民調(diào)查結(jié)果統(tǒng)計(jì)如下:

(1)根據(jù)已有數(shù)據(jù),把表格數(shù)據(jù)填寫完整;

(2)能否在犯錯(cuò)誤的概率不超過5%的前提下認(rèn)為不同年齡與支持申辦奧運(yùn)無關(guān)?

(3)已知在被調(diào)查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現(xiàn)從這5名女性中隨機(jī)抽取3人,求至多有1位教師的概率.

附: .

查看答案和解析>>

同步練習(xí)冊答案