精英家教網 > 高中數學 > 題目詳情
已知點A(2,3),B(-5,2),若直線l過點P(-1,6),且與線段AB相交,則該直線傾斜角的取值范圍是
0°≤α≤45°,或 135°≤α<180°
0°≤α≤45°,或 135°≤α<180°
分析:首先求出直線PA、PB的斜率,然后結合圖象即可寫出答案.
解答:解:直線PA的斜率k=
3-6
2+1
=-1,傾斜角等于135°
直線PB的斜率k′=
2-6
-5+1
=1,傾斜角等于45°
結合圖象由條件可得 直線l的傾斜角α的取值范圍是 0°≤α≤45°,或 135°≤α<180°,
故答案為:0°≤α≤45°,或 135°≤α<180°
點評:本題主要考查直線的傾斜角和斜率的關系,以及傾斜角的取值范圍,體現了數形結合的數學思想,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知點A(2,3),B(-3,-2),若直線l過點P(1,1),且與線段AB相交,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點A(-2,-3),B(4,1),延長AB至P,使|AP|=3|PB|,求P點的坐標.
精英家教網

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點A(2,-3),B(-3,-2),直線l過點P(3,1),且與線段AB相交,則直線l的斜率的取值范圍( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2006•西城區(qū)二模)已知點A(2,3),C(0,1),且
AB
=-2
BC
,則點B的坐標為
(-2,-1)
(-2,-1)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點A(-2,-3),B(3,2),直線l過點P(-1,5)且與線段AB有交點,設直線l的斜率為k,則k的取值范圍是
k≤-
3
4
或k≥8
k≤-
3
4
或k≥8

查看答案和解析>>

同步練習冊答案