已知函數(shù), 
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)上是減函數(shù),求實(shí)數(shù)的最小值;
(3)若,使成立,求實(shí)數(shù)取值范圍.
(1)函數(shù)的單調(diào)遞減區(qū)間是,遞增區(qū)間是。
(2)的最小值為。
(3)

試題分析:函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020017737754.png" style="vertical-align:middle;" />,且   2分
(1)函數(shù)
當(dāng)時(shí), ;當(dāng)時(shí),
所以函數(shù)的單調(diào)遞減區(qū)間是,,遞增區(qū)間是  .5分
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020017503447.png" style="vertical-align:middle;" />在上為減函數(shù),故上恒成立
所以當(dāng)時(shí),

故當(dāng),即時(shí),
所以于是,故的最小值為             .8分
(3)命題“若,使成立”等價(jià)于
“當(dāng)時(shí),有
由(2),當(dāng)時(shí),,所以
問(wèn)題等價(jià)于: “當(dāng)時(shí),有”            9分
(i)當(dāng)時(shí),由(2)上為減函數(shù)
,故
(ii)當(dāng)時(shí),由于上為增函數(shù)
的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020018611695.png" style="vertical-align:middle;" />,即
的單調(diào)性值域知
唯一,使,且滿足:
當(dāng)時(shí),為減函數(shù);當(dāng)時(shí),,為增函數(shù);所以, 
所以,,與矛盾,不合題意
綜上,                                            12分
點(diǎn)評(píng):難題,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值,是導(dǎo)數(shù)應(yīng)用的基本問(wèn)題,主要依據(jù)“在給定區(qū)間,導(dǎo)函數(shù)值非負(fù),函數(shù)為增函數(shù);導(dǎo)函數(shù)值非正,函數(shù)為減函數(shù)”。確定函數(shù)的極值,遵循“求導(dǎo)數(shù),求駐點(diǎn),研究單調(diào)性,求極值”。不等式恒成立問(wèn)題,往往通過(guò)構(gòu)造函數(shù),研究函數(shù)的最值,使問(wèn)題得到解決。本題的難點(diǎn)在于利用轉(zhuǎn)化思想的靈活應(yīng)用。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)若處有極值,求的單調(diào)遞增區(qū)間;
(Ⅲ)是否存在實(shí)數(shù),使在區(qū)間的最小值是3,若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)m為實(shí)數(shù),函數(shù)f(x)=-+2x+m,x∈R
(Ⅰ)求f(x)的單調(diào)區(qū)間與極值;
(Ⅱ)求證:當(dāng)m≤1且x>0時(shí),>2+2mx+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

由曲線和直線,軸所圍圖形的面積為        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求函數(shù)在區(qū)間[1,3]上的極值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

曲線在點(diǎn)處的切線方程為              .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)若曲線在點(diǎn)處與直線相切,求的值.
(Ⅱ)若曲線與直線有兩個(gè)不同的交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

,則的值是             ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)上單調(diào)遞增,則的最小值為(    )
A.1B.3C.4D.9

查看答案和解析>>

同步練習(xí)冊(cè)答案