【題目】2018年2月22日上午,山東省省委、省政府在濟南召開山東省全面展開新舊動能轉換重大工程動員大會,會議動員各方力量,迅速全面展開新舊動能轉換重大工程.某企業(yè)響應號召,對現(xiàn)有設備進行改造,為了分析設備改造前后的效果,現(xiàn)從設備改造前后生產的大量產品中各抽取了200件產品作為樣本,檢測一項質量指標值,若該項質量指標值落在內的產品視為合格品,否則為不合格品.圖3是設備改造前的樣本的頻率分布直方圖,表1是設備改造后的樣本的頻數(shù)分布表.
表1:設備改造后樣本的頻數(shù)分布表
(1)完成下面的列聯(lián)表,并判斷是否有99%的把握認為該企業(yè)生產的這種產品的質量指標值與設備改造有關;
(2)根據(jù)圖3和表1提供的數(shù)據(jù),試從產品合格率的角度對改造前后設備的優(yōu)劣進行比較;
(3)企業(yè)將不合格品全部銷毀后,根據(jù)客戶需求對合格品進行等級細分,質量指標值落在內的定為一等品,每件售價240元;質量指標值落在或內的定為二等品,每件售價180元;其它的合格品定為三等品,每件售價120元.根據(jù)表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產品中抽到一件相應等級產品的概率.現(xiàn)有一名顧客隨機購買兩件產品,設其支付的費用為(單位:元),求的分布列和數(shù)學期望.
附:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
【答案】(1) 有99%的把握認為該企業(yè)生產的這種產品的質量指標值與設備改造有關(2)見解析
【解析】試題分析:(1)根據(jù)直觀圖以及表格中所給數(shù)據(jù),可完成列聯(lián)表;根據(jù)列聯(lián)表,利用公式可得,與臨界值比較可得結果;(2)根據(jù)圖和表可知,利用古典概型概率公式可得設備改造前產品為合格品的概率約為,設備改造后產品為合格品的概率約為,比較合格率的大小即可得結果;(3)隨機變量的取值為: , , , , ,根據(jù)獨立事件的概率公式計算出各隨機變量對應的概率,可得分布列,利用期望公式可得結果.
試題解析:(1)根據(jù)圖3和表1得到列聯(lián)表:
設備改造前 | 設備改造后 | 合計 | |
合格品 | 172 | 192 | 364 |
不合格品 | 28 | 8 | 36 |
合計 | 200 | 200 | 400 |
將列聯(lián)表中的數(shù)據(jù)代入公式計算得:
.
∵,
∴有99%的把握認為該企業(yè)生產的這種產品的質量指標值與設備改造有關.
(2)根據(jù)圖和表可知,設備改造前產品為合格品的概率約為,設備改造后產品為合格品的概率約為;顯然設備改造后產品合格率更高,因此,設備改造后性能更優(yōu).
(3)由表1知:
一等品的頻率為,即從所有產品中隨機抽到一件一等品的概率為;
二等品的頻率為,即從所有產品中隨機抽到一件二等品的概率為;
三等品的頻率為,即從所有產品中隨機抽到一件三等品的概率為.
由已知得:隨機變量的取值為: , , , , .
,
,
,
,
.
∴隨機變量的分布列為:
240 | 300 | 360 | 420 | 480 | |
∴ .
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知圓C:.
若圓C的切線l在x軸和y軸上的截距相等,且截距不為零,求切線l的方程;
已知點為直線上一點,由點P向圓C引一條切線,切點為M,若,求點P的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】公交車的數(shù)量太多容易造成資源浪費,太少又難以滿足乘客的需求,為了合理布置車輛,公交公司在2路車的乘客中隨機調查了50名乘客,經整理,他們候車時間(單位:)的莖葉圖如下:
(Ⅰ)將候車時間分為八組,作出相應的頻率分布直方圖;
(Ⅱ)若公交公司將2路車發(fā)車時間調整為每隔15發(fā)一趟車,那么上述樣本點將發(fā)生變化(例如候車時間為9的不變,候車時間為17的變?yōu)?/span>2),現(xiàn)從2路車的乘客中任取5人,設其中候車時間不超過10的乘客人數(shù)為,求的數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=a-.
(1)求f(0);
(2)探究f(x)的單調性,并證明你的結論;
(3)若f(x)為奇函數(shù),求滿足f(ax)<f(2)的x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓過點,且離心率為.過拋物線上一點作的切線交橢圓于,兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線,使得,若存在,求出的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知M(x1,y1)是橢圓=1(a>b>0)上任意一點,F為橢圓的右焦點.
(1)若橢圓的離心率為e,試用e,a,x1表示|MF|,并求|MF|的最值;
(2)已知直線m與圓x2+y2=b2相切,并與橢圓交于A、B兩點,且直線m與圓的切點Q在y軸右側,若a=4,求△ABF的周長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為研究晝夜溫差大小與某疾病的患病人數(shù)之間的關系,經查詢得到今年上半年每月15號的晝夜溫差情況與患者的人數(shù)如表:
日期 | 1月15日 | 2月15日 | 3月15日 | 4月15日 | 5月15日 | 6月15日 |
晝夜溫差 | 10 | 11 | 10 | 10 | 9 | 7 |
患者人數(shù)個 | 21 | 26 | 20 | 18 | 16 | 8 |
研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關于x的線性回歸方程;
若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問中所得線性回歸方程是否理想?
參考公式:,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com