【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線過(guò)點(diǎn),傾斜角為.
(Ⅰ)求曲線的直角坐標(biāo)方程與直線的參數(shù)方程;
(Ⅱ)設(shè)直線與曲線交于兩點(diǎn),求的值.
【答案】(Ⅰ)曲線的直角坐標(biāo)方程為:,直線的參數(shù)方程為 (為參數(shù)).
(Ⅱ).
【解析】試題分析:(Ⅰ)根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,即可得到的直角坐標(biāo)方程,進(jìn)而得到直線的參數(shù)方程;
(Ⅱ)將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,求的,即可利用的幾何意義,求得.
試題解析:
(Ⅰ)因?yàn)?/span>,所以
所以,即曲線的直角坐標(biāo)方程為:
直線的參數(shù)方程(為參數(shù))
即 (為參數(shù))
(Ⅱ)設(shè)點(diǎn)對(duì)應(yīng)的參數(shù)分別為,
將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程得
整理,得,所以
因?yàn)?/span>,,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(題文)隨著手機(jī)的發(fā)展,“微信”越來(lái)越成為人們交流的一種方式.某機(jī)構(gòu)對(duì)“使用微信交流”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對(duì)“使用微信交流”的贊成人數(shù)如下表:
年齡(單位:歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 5 | 10 | 12 | 7 | 2 | 1 |
(1)若以“年齡45歲為分界點(diǎn)”,由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“使用微信交流”的態(tài)度與人的年齡有關(guān).
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計(jì) | |
贊成的人數(shù) | |||
不贊成的人數(shù) | |||
合計(jì) |
(2)若從年齡在[25,35)和[55,65)的被調(diào)查人中按照分層抽樣的方法選取6人進(jìn)行追蹤調(diào)查,并給予其中3人“紅包”獎(jiǎng)勵(lì),求3人中至少有1人年齡在[55,65)的概率.
參考公式:,.
參考數(shù)據(jù):
0.100 | ||||
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知五面體ABCDEF中,四邊形CDEF為矩形,,CD=2DE=2AD=2AB=4,AC=,.
(1)求證:AB平面ADE;
(2)求平面EBC與平面BCF所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓O:x2+y2=9及點(diǎn)C(2,1),過(guò)點(diǎn)C的直線l與圓O交于P,Q兩點(diǎn),當(dāng)△OPQ的面積最大時(shí),直線l的方程為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)求經(jīng)過(guò)點(diǎn)P(4,1),且在兩坐標(biāo)軸上的截距相等的直線方程.
(2)設(shè)直線y=x+2a與圓C:x2+y2-2ay-2=0相交于A,B兩點(diǎn),若|AB|=2,求圓C的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,求函數(shù)的極值;
(Ⅱ)若,,,使得(),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,2bcosA=acosC+ccosA.
(1)求角A的大;
(2)若a=3,△ABC的周長(zhǎng)為8,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校社團(tuán)活動(dòng)開展有聲有色,極大地推動(dòng)了學(xué)生的全面發(fā)展,深受學(xué)生歡迎,每屆高一新生都踴躍報(bào)名加入.現(xiàn)已知高一某班60名同學(xué)中有4名男同學(xué)和2名女同學(xué)參加心理社,在這6名同學(xué)中,2名同學(xué)初中畢業(yè)于同一所學(xué)校,其余4名同學(xué)初中畢業(yè)于其他4所不同的學(xué)校.現(xiàn)從這6名同學(xué)中隨機(jī)選取2名同學(xué)代表社團(tuán)參加校際交流(每名同學(xué)被選到的可能性相同).
(Ⅰ)在該班隨機(jī)選取1名同學(xué),求該同學(xué)參加心理社團(tuán)的概率;
(Ⅱ)求從6名同學(xué)中選出的2名同學(xué)代表至少有1名女同學(xué)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com