已知A(a,0),B(0,a),a>0,點(diǎn)P在線段AB上,且
AP
=t
AB
(0≤t≤1),則
OA
OP
的最大值是
a2
a2
分析:首先分析題目已知A、B的坐標(biāo),點(diǎn)P在線段AB上,且
AP
=t
AB
(0≤t≤1),求
OA
OP
的最大值.故可考慮根據(jù)向量的坐標(biāo)及加減運(yùn)算表示出
OA
OP
.然后根據(jù)平面向量的數(shù)量乘積運(yùn)算求出結(jié)果即可.
解答:解:因?yàn)辄c(diǎn)A、B的坐標(biāo)分別為(a,0),(0,a)
所以
AB
=(-a , a)
,
OA
=(a,0)
又由點(diǎn)P在線段AB上,且
AP
=t
AB
=(-at,at)
所以
OP
=
OA
+
AP
=(a,0)+(-at,at)=(-at+a,at)
OA
OP
=(a,0)•(-at+a,at)=-a2t+a2,
當(dāng)t=0時(shí)取最大值為:a2
故答案為:a2
點(diǎn)評(píng):此題主要考查平面向量的數(shù)量乘積的運(yùn)算問(wèn)題,其中涉及到向量的坐標(biāo)表示及加法運(yùn)算,題目覆蓋知識(shí)點(diǎn)少,屬于基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c,d為實(shí)數(shù),判斷下列命題的真假.
(1)若ac2>bc2,則a>b
(2)若a<b<c,則 a2>ab>b2
(3)若a>b>0,則
a
d
b
c

(4)若0<a<b,則 
b
a
b+x
a+x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•梅州一模)已知F1,F(xiàn)2分別是橢圓C:
y2
a2
+
x2
b2
=1(a>b>0)
的上、下焦點(diǎn),其中F1也是拋物線C1:x2=4y的焦點(diǎn),點(diǎn)M是C1與C2在第二象限的交點(diǎn),且|MF1|=
5
3

(1)求橢圓C1的方程;
(2)已知A(b,0),B(0,a),直線y=kx(k>0)與AB相交于點(diǎn)D,與橢圓C1相交于點(diǎn)E,F(xiàn)兩點(diǎn),求四邊形AEBF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓E:
x2
a2
-
y2
b2
=1(a>b>0)的離心率為
2
2
,已知A(a,0),B(0,-b),且原點(diǎn)O到直線AB的距離為
2
3
3

(Ⅰ)  求橢圓E的方程;
(Ⅱ)已知過(guò)點(diǎn)M(1,0)的直線交橢圓E于C,D兩點(diǎn),若存在動(dòng)點(diǎn)N,使得直線NC,NM,ND的斜率依次成等差數(shù)列,試確定點(diǎn)N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,我把由兩條射線AE,BF和以AB為直徑的半圓所組成的圖形叫作圖形C(注:不含AB線段).已知A(-1,0),B(1,0),AE∥BF,且半圓與y軸的交點(diǎn)D在射線AE的反向延長(zhǎng)線上.
(1)求兩條射線AE,BF所在直線的距離;
(2)當(dāng)一次函數(shù)y=x+b的圖象與圖形C恰好只有一個(gè)公共點(diǎn)時(shí),寫出b的取值范圍;當(dāng)一次函數(shù)y=x+b的圖象與圖形C恰好只有兩個(gè)公共點(diǎn)時(shí),寫出b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知空間向量
a
=(a1,a2,a3),
b
=(b1,b2,b3),定義兩個(gè)空間向量
a
b
之間的距離為d(
a
,
b
)=
3
i=1
|bi-ai|.
(1)若
a
=(1,2,3),
b
=(4,1,1),
c
=(
11
2
1
2
,0),證明:d(
a
,
b
)+d(
b
,
c
)=d(
a
,
c

(2)已知
c
=(c1,c2,c3
    ①證明:若?λ>0,使
b
-
a
=λ(
c
-
b
),則d(
a
,
b
)+d(
a
c
)=d(
a
,
c
).
    ②若d(
a
,
b
)+d(
b
,
c
)=d(
a
c
),是否一定?λ>0,使
b
-
a
=λ(
c
-
b
)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案