【題目】社會在對全日制高中的教學水平進行評價時,常常將被清華北大錄取的學生人數(shù)作為衡量的標準之一.重慶市教委調(diào)研了某中學近五年(2013年-2017年)高考被清華北大錄取的學生人數(shù),制作了如下所示的表格(設2013年為第一年).
年份(第年) | |||||
人數(shù)(人) |
(1)試求人數(shù)關(guān)于年份的回歸直線方程;
(2)在滿足(1)的前提之下,估計2018年該中學被清華北大錄取的人數(shù)(精確到個位);
(3)教委準備在這五年的數(shù)據(jù)中任意選取兩年作進一步研究,求被選取的兩年恰好不相鄰的概率.
參考公式:.
【答案】(1);(2)59;(3)
【解析】分析:(1)根據(jù)表格中數(shù)據(jù)及平均數(shù)公式可求出與的值從而可得樣本中心點的坐標,進而求可得公式中所需數(shù)據(jù),求出,再結(jié)合樣本中心點的性質(zhì)可得,而可得關(guān)于的回歸方程;(2)2018年對應的,代入(Ⅰ)(人); (3)利用列舉法,所有的基本事件共個,恰好不相鄰的基本事件共6個,利用古典概型概率公式可得結(jié)果.
詳解:(1).
(2)2018年對應的,代入(Ⅰ)(人).
(3)所有的基本事件共10個:
(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),
恰好不相鄰的基本事件共6個,則.
科目:高中數(shù)學 來源: 題型:
【題目】設集合為下述條件的函數(shù)的集合:①定義域為;②對任意實數(shù),都有.
(1)判斷函數(shù)是否為中元素,并說明理由;
(2)若函數(shù)是奇函數(shù),證明:;
(3)設和都是中的元素,求證:也是中的元素,并舉例說明,不一定是中的元素.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了得到函數(shù) 的圖象,只需將函數(shù)y=sin2x的圖象( )
A.向右平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向左平移 個單位
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)= sin ,若存在f(x)的極值點x0滿足x02+[f(x0)]2<m2 , 則m的取值范圍是( )
A.(﹣∞,﹣6)∪(6,+∞)
B.(﹣∞,﹣4)∪(4,+∞)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,直棱柱ABC-中,D,E分別是AB,BB1的中點,=AC=CB=AB.
(Ⅰ)證明://平面;
(Ⅱ)求二面角D--E的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設,分別為具有公共焦點與的橢圓和雙曲線的離心率,為兩曲線的一個公共點,且滿
足,則的值為 ( )
A. B. 1 C. 2 D. 不確定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知{an}為等比數(shù)列,a4+a7=2,a5a6=-8,則a1+a10=( )
A. 7 B. 5
C. -5 D. -7
【答案】D
【解析】由解得或
∴或,∴a1+a10=a1(1+q9)=-7.選D.
點睛:在解決等差、等比數(shù)列的運算問題時,有兩個處理思路,一是利用基本量,將多元問題簡化為一元問題,雖有一定量的運算,但思路簡潔,目標明確;二是利用等差、等比數(shù)列的性質(zhì),性質(zhì)是兩種數(shù)列基本規(guī)律的深刻體現(xiàn),是解決等差、等比數(shù)列問題既快捷又方便的工具,應有意識地去應用.但在應用性質(zhì)時要注意性質(zhì)的前提條件,有時需要進行適當變形. 在解決等差、等比數(shù)列的運算問題時,經(jīng)常采用“巧用性質(zhì)、整體考慮、減少運算量”的方法.
【題型】單選題
【結(jié)束】
8
【題目】在數(shù)列{ }中,已知,,,則等于( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com