對定義域分別是Df、Dg的函數(shù)y=f(x),y=g(x),規(guī)定:函數(shù)h(x)=
f(x)•g(x)    當x∈Df且x∈Dg
1      當x∈Df且x∉Dg
-1   當x∉Df且x∈Dg

(1)若f(α)=sinα•cosα,g(α)=cscα,寫出h(α)的解析式;
(2)寫出問題(1)中h(α)的取值范圍;
(3)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,π],請設計一個定義域為R的函數(shù)y=f(x),及一個α的值,使得h(x)=cos4x,并予以證明.
分析:(1)根據題中的新定義列出h(α)的解析式即可;
(2)根據余弦函數(shù)的值域,以及h(α)的解析式,求出h(α)的范圍即可;
(3)令f(x)=sin2x+cos2x,α=
π
4
,可使h(x)=cos4x,理由為:根據若g(x)=f(x+α),利用誘導公式化簡求出cos2x-sin2x的值,再根據h(x)=f(x)f(x+α),利用平方差公式及二倍角的余弦函數(shù)公式即可得到結果.
解答:解:(1)根據題意得:h(α)=
cosα   (α≠kπ,k∈Z)
1  (α=kπ,k∈Z)
;
(2)h(α)的取值范圍是(-1,1];
(3)令f(x)=sin2x+cos2x,α=
π
4
,
g(x)=f(x+α)=sin2(x+
π
4
)+cos2(x+
π
4
)=cos2x-sin2x,
則h(x)=f(x)f(x+α)=(sin2x+cos2x)(cos2x-sin2x)=cos4x.
點評:此題考查了兩角和與差的正弦函數(shù)公式,以及函數(shù)解析式的求解及常用方法,熟練掌握公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

對定義域分別是Df、Dg的函數(shù)y=f(x)、y=g(x),規(guī)定:函數(shù)h(x)=
f(x)•g(x)  當x∈Df且x∈Dg
f(x)          當x∈Df且x∉Dg
g(x)          當x∉Df且x∈Dg

(1)若函數(shù)f(x)=
1
x
,g(x)=x2+4,寫出函數(shù)h(x)的解析式;
(2)求問題(1)中函數(shù)h(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對定義域分別是Df、Dg的函數(shù)y=f(x)、y=g(x),規(guī)定:函數(shù)h(x)=
f(x)•g(x)  (當x∈Df且x∈Dg)
f(x)  (當x∈Df且x∉Dg)
g(x)  (當x∉Df且x∈Dg)

(Ⅰ)若函數(shù)f(x)=
1
x-1
,g(x)=x2,寫出函數(shù)h(x)的解析式;
(Ⅱ)求問題(1)中函數(shù)h(x)的值域;
(Ⅲ)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,π],請設計一個定義域為R的函數(shù)y=f(x),及一個α的值,使得h(x)=cos4x,并予以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對定義域分別是Df、Dg的函數(shù)y=f(x)、y=g(x),規(guī)定:函數(shù)h(x)=

   

    若函數(shù)f(x)=-2x+3,x≥1;g(x)=x-2,x∈R,寫出函數(shù)h(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對定義域分別是Df,Dg的函數(shù)y=f(x),y=g(x).規(guī)定:

函數(shù)h(x)=

(1)若函數(shù)f(x)=,g(x)=x2,寫出函數(shù)h(x)的解析式;

(2)求問題(1)中函數(shù)h(x)的值域;

(3)若g(x)=f(x+a),其中a是常數(shù),且a∈[0,π],請設計一個定義域為R的函數(shù)y=f(x)及一個a的值,使得h(x)=cos4x,并予以證明.

查看答案和解析>>

同步練習冊答案