【題目】已知函數(shù)圖象的對(duì)稱軸完全相同,若,則y=g(x)的值域是( 。

A. [-1,2] B. [-1,3] C. [,0,2] D. [0,,3]

【答案】A

【解析】

根據(jù)兩個(gè)函數(shù)的對(duì)稱軸一樣得周期相同,對(duì)稱軸相同依次可得ωφ,從而得gx)=2cos2x+1,進(jìn)而利用定義域求解值域即可.

∵函數(shù)圖象的對(duì)稱軸完全相同,∴ω2

∴函數(shù)fx)=3sin2x),則對(duì)稱軸為2xkπ,kZ,即x,kZ,

gx)=2cos2x+1,則2xkπ,kZ,即x,kZ,

,∴φ,∴gx)=2cos2x+1

x[0,],∴2x[,],∴cos2x)∈[1,]

gx)∈[1,2]

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,,,,

求異面直線ABPD所成角的余弦值;

證明:平面平面PBD;

求直線DC與平面PBD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線方程為.

1)已知直線與雙曲線交于不同的兩點(diǎn),且線段的中點(diǎn)在圓上,求的值;

2)設(shè)直線是圓上動(dòng)點(diǎn)處的切線,與雙曲線交于不同的兩點(diǎn),證明的大小為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市調(diào)研考試后,某校對(duì)甲、乙兩個(gè)文科班的數(shù)學(xué)考試成績(jī)進(jìn)行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計(jì)成績(jī)后,得到如下的列聯(lián)表,且已知在甲、乙兩個(gè)文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為.

優(yōu)秀

非優(yōu)秀

合計(jì)

甲班

10

乙班

30

合計(jì)

110

1)請(qǐng)完成上面的列聯(lián)表;

2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認(rèn)為“成績(jī)與班級(jí)有關(guān)系”;

參考公式與臨界值表:.

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)求該函數(shù)的單調(diào)區(qū)間;

2)若當(dāng)x[22]時(shí),不等式fx)<m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知圓圓心為,過點(diǎn)且斜率為的直線與圓相交于不同的兩點(diǎn)

)求的取值范圍;

)是否存在常數(shù),使得向量共線?如果存在,求值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,設(shè)

1)數(shù)列是否為等比數(shù)列?證明你的結(jié)論;

2)設(shè)數(shù)列的前項(xiàng)和分別為.若,求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足:,,其中為實(shí)數(shù),為正整數(shù).

)證明:對(duì)任意的實(shí)數(shù),數(shù)列不是等比數(shù)列;

)證明:當(dāng)時(shí),數(shù)列是等比數(shù)列;

)設(shè)為數(shù)列的前項(xiàng)和,是否存在實(shí)數(shù),使得對(duì)任意正整數(shù),都有?若存在,求的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為,且直線l經(jīng)過曲線C的左焦點(diǎn)F.

(1)求直線l的普通方程;

(2)設(shè)曲線C的內(nèi)接矩形的周長(zhǎng)為L(zhǎng),求L的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案