分析 (1)利用三角函數(shù)的恒等變換化簡(jiǎn)函數(shù)的解析式,再利用正弦函數(shù)的周期性,得出結(jié)論;(2)根據(jù)正弦函數(shù)的性質(zhì)得到關(guān)于x的方程,解出即可.
解答 解:(1)y=$\sqrt{3}$sin(2x-$\frac{π}{6}$)+2sin2(x-$\frac{π}{12}$)
=$\sqrt{3}$sin(2x-$\frac{π}{6}$)+1-cos(2x-$\frac{π}{6}$)
=2[($\frac{\sqrt{3}}{2}$sin(2x-$\frac{π}{6}$)-$\frac{1}{2}$cos(2x-$\frac{π}{6}$)]
=2sin(2x-$\frac{π}{3}$)+1,
∴函數(shù)f(x)的最小正周期為$\frac{2π}{2}$=π,
(2)由(1)當(dāng)2x-$\frac{π}{3}$=2kπ+$\frac{π}{2}$時(shí),函數(shù)f(x)取得最大值為3,
此時(shí),x的取值集合為{x|x=kπ+$\frac{5π}{12}$,k∈Z}.
點(diǎn)評(píng) 本題主要考查三角函數(shù)的恒等變換,正弦函數(shù)的周期性性問題,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{39}}{6}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\frac{\sqrt{7}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | K | B. | 2.5K | C. | 4K | D. | 5K |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $-\frac{1}{2}$ | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com