精英家教網 > 高中數學 > 題目詳情

【題目】如圖,已知雙曲線 =1(a>0,b>0)的左右焦點分別為F1 , F2 , |F1F2|=4,P是雙曲線右支上的一點,F2P與y軸交于點A,△APF1的內切圓在邊PF1上的切點為Q,若|PQ|=1,則雙曲線的離心率是(
A.3
B.2
C.
D.

【答案】B
【解析】解:由題意,∵|PQ|=1,△APF1的內切圓在邊PF1上的切點為Q,∴根據切線長定理可得AM=AN,F1M=F1Q,PN=PQ,
∵|AF1|=|AF2|,
∴AM+F1M=AN+PN+NF2 ,
∴F1M=PN+NF2=PQ+PF2
∴|PF1|﹣|PF2|=F1Q+PQ﹣PF2=F1M+PQ﹣PF2=PQ+PF2+PQ﹣PF2=2PQ=2,
∵|F1F2|=4,
∴雙曲線的離心率是e= =2.
故選:B.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數是定義在上的偶函數,且當時, .現已畫出函數軸左側的圖象,如圖所示,請根據圖象.

)寫出函數的增區(qū)間.

)寫出函數的解析式.

)若函數,求函數的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數的定義域為,如果存在函數,使得對于一切實數都成立,那么稱為函數的一個承托函數.

已知函數的圖象經過點

)若, ,寫出函數的一個承托函數(結論不要求注明).

)判斷是否存在常數, ,使得為函數的一個承托函數,且為函數的一個承托函數?若存在,求出 , 的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四棱錐P﹣ABCD的底面ABCD是等腰梯形,AB∥CD,且AC⊥BD,AC與BD交于O,PO⊥底面ABCD,PO=2,AB=2CD=2 ,E、F分別是AB、AP的中點.
(1)求證:AC⊥EF;
(2)求二面角F﹣OE﹣A的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設f(x)=|x﹣1|+|x+1|,(x∈R)
(1)求證:f(x)≥2;
(2)若不等式f(x)≥ 對任意非零實數b恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點A(1,2),B(﹣3,﹣1),若圓x2+y2=r2(r>0)上恰有兩點M,N,使得△MAB和△NAB的面積均為5,則r的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓C經過A(﹣2,1),B(5,0)兩點,且圓心C在直線y=2x上.
(1)求圓C的方程;
(2)動直線l:(m+2)x+(2m+1)y﹣7m﹣8=0過定點M,斜率為1的直線m過點M,直線m和圓C相交于P,Q兩點,求PQ的長度.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設點P為有公共焦點F1 , F2的橢圓和雙曲線的一個交點,且cos∠F1PF2= ,橢圓的離心率為e1 , 雙曲線的離心率為e2 , 若e2=2e1 , 則e1=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】用長為18 m的鋼條圍成一個長方體形狀的框架,要求長方體的長與寬之比為2:1,問該長方體的長、寬、高各為多少時,其體積最大?最大體積是多少?

查看答案和解析>>

同步練習冊答案