已知橢圓C短軸的一個端點(diǎn)為(0,1),離心率為
2
2
3

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線y=x+m交橢圓C于A、B兩點(diǎn),若|AB|=
6
3
5
,求m.
(1)由題意可設(shè)橢圓C的標(biāo)準(zhǔn)方程為
x2
a2
+
y2
b2
=1
(a>b>0).
∵橢圓C短軸的一個端點(diǎn)為(0,1),離心率為
2
2
3

b=1
c
a
=
2
2
3
a2=b2+c2
,解得a2=9,b=1,c2=8.
∴橢圓C的標(biāo)準(zhǔn)方程為
x2
9
+y2=1.
(2)設(shè)A(x1,y1),B(x2,y2).
聯(lián)立
y=x+m
x2
9
+y2=1

得10x2+18mx+9m2-9=0,
∴x1+x2=-
9
5
m
,x1x2=
9m2-9
10

∴|AB|=
2
(x1+x2)2-4x1x2
=
2
81m2
25
-4×
9m2-9
10
=
6
3
5

解得m=2.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知實(shí)數(shù)4,m,9構(gòu)成一個等比數(shù)列,則圓錐曲線x2+
y2
m
=1
的離心率為( 。
A.
30
6
B.
7
C.
30
6
7
D.
5
6
或7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知A,B是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
長軸的兩個端點(diǎn),M,N是橢圓上關(guān)于x軸對稱的兩點(diǎn),直線AM,BN的斜率分別為k1,k2(k1k2≠0),若橢圓的離心率為
3
2
,則|k1|+|k2|的最小值為(  )
A.1B.
2
C.
3
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0),A、B是橢圓上的兩點(diǎn),線段AB的垂直平分線與x軸相交于點(diǎn)P(x0,0).證明-
a2-b2
a
x0
a2-b2
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓C:
x2
16
+
y2
12
=1
的左右焦點(diǎn)分別為F1、F2,則在橢圓C上滿足
PF1
PF2
=0
的點(diǎn)P的個數(shù)有( 。
A.0B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線
x2
36
+
y2
9
=1
與曲線
x2
36-k
+
y2
9-k
=1(k<9)
的( 。
A.長、短軸相等B.準(zhǔn)線相等
C.離心率相等D.焦距相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓x2+my2=1(0<m<1)的離心率為
2
2
,則它的長軸長是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知P為橢圓
x2
16
+
y2
12
=1
上動點(diǎn),F(xiàn)為橢圓的右焦點(diǎn),點(diǎn)A的坐標(biāo)為(3,1),則|PA|+2|PF|的最小值為( 。
A.10+
2
B.10-
2
C.5D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)且垂直于x軸的直線與橢圓交于M、N兩點(diǎn),以MN為直徑的圓恰好過左焦點(diǎn),則橢圓的離心率等于______.

查看答案和解析>>

同步練習(xí)冊答案