函數(shù)y=asinx-bcosx(ab≠0)的一條對稱軸的方程為x=
π
4
,則以
v
=(a,b)
為方向向量的直線的傾斜角為 (  )
A、45°B、60°
C、120°D、135°
分析:利用 x=
π
4
是函數(shù)y=asinx-bcosx圖象的一條對稱軸,求出a,b的關(guān)系,根據(jù)直線的方向向量與斜率的關(guān)系求出直線的斜率,從而求得直線的傾斜角.
解答:解:∵函數(shù)f(x)=asinx-bcosx(ab≠0)的一條對稱軸的方程為x=
π
4
,
∴f(0)=f(
π
2
),即-b=a,
v
=(a,b)
為直線的方向向量,
∴k=
b
a
=-1,∵直線的傾斜角α∈[0,π),
∴α=135°.
故選D.
點評:本題是基礎(chǔ)題,此題考查了對稱性的應(yīng)用和直線的方向向量,以及直線的斜率和傾斜角等基礎(chǔ)知識,注意對稱軸的應(yīng)用,考查分析問題解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線x=
π
6
是函數(shù)y=asinx-bcosx圖象的一條對稱軸,則函數(shù)y=bsinx-acosx圖象的一條對稱軸方程是(  )
A、x=
π
6
B、x=
π
3
C、x=
π
2
D、x=
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=asinx+2bcosx圖象的一條對稱軸方程是x=
π
4
,則直線ax+by+1=0和直線x+y+2=0的夾角的正切值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知當(dāng)x=
π
6
時,函數(shù)y=sinx+acosx取最大值,則函數(shù)y=asinx-cosx圖象的一條對稱軸為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=asinx+
1
3
sin3x在x=
π
3
處有極值,則a=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知過橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)右焦點F且斜率為1的直線交橢圓C于A,B兩點,N為弦AB的中點;又函數(shù)y=asinx+3bcosx圖象的一條對稱軸的方程是x=
π
6
.(1)求橢圓C的離心率e與直線AB的方程;(2)對于任意一點M∈C,試證:總存在角θ(θ∈R)使等式
OM
=cosθ
OA
+sinθ
OB
成立.

查看答案和解析>>

同步練習(xí)冊答案