【題目】已知命題p:方程 =1所表示的圖形是焦點(diǎn)在y軸上的雙曲線,命題q:復(fù)數(shù)z=(m﹣3)+(m﹣1)i對應(yīng)的點(diǎn)在第二象限,又p或q為真,p且q為假,求實(shí)數(shù)m的取值范圍.

【答案】解:若p為真,則 得m>2;
若命題q為真,則 ,得1<m<3;
由p∨q為真,p∧q為假知p,q一真一假;
;
∴解得m≥3,或1<m≤2;
∴m的取值范圍是(1,2]∪[3,+∞).
【解析】根據(jù)條件分別判斷p,q的真假,結(jié)合復(fù)合命題的真假關(guān)系進(jìn)行求解即可.
【考點(diǎn)精析】通過靈活運(yùn)用復(fù)合命題的真假,掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時為真,其他情況時為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時為假,其他情況時為真即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: (a>b>0)的離心率為 ,短軸長為 ,過右焦點(diǎn)F的直線l與C相交于A,B兩點(diǎn).O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)若點(diǎn)P在橢圓C上,且 = + ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)y=f(x)的定義域?yàn)镈,若對于任意x1、x2∈D,當(dāng)x1+x2=2a時,恒有f(x1)+f(x2)=2b,則稱點(diǎn)(a,b)為函數(shù)y=f(x)圖象的對稱中心.研究函數(shù)f(x)=x+sinπx﹣3的某一個對稱中心,并利用對稱中心的上述定義,可得到f( )+f( )+…+f( )+f( )的值為(
A.4027
B.﹣4027
C.8054
D.﹣8054

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若曲線在點(diǎn)處的切線與曲線切于點(diǎn),求的值;

(Ⅲ)若恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國上是世界嚴(yán)重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計(jì)劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標(biāo)準(zhǔn)(噸),用水量不超過的部分按平價收費(fèi),超過的部分按議價收費(fèi),為了了解全市民月用水量的分布情況,通過抽樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照, ,…, 分成9組,制成了如圖所示的頻率分布直方圖.

(Ⅰ)求直方圖中 的值;

(Ⅱ)已知該市有80萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說明理由;

(Ⅲ)若該市政府希望使的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計(jì)的值,并說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中, 分別是線段的中點(diǎn).

(1)求異面直線所成角的大小;

(2)求直線與平面所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義域?yàn)?/span>的函數(shù),如果存在區(qū)間),同時滿足:

內(nèi)是單調(diào)函數(shù);②當(dāng)定義域是時, 的值域也是

則稱函數(shù)是區(qū)間上的“保值函數(shù)”.

(1)求證:函數(shù)不是定義域上的“保值函數(shù)”;

(2)已知)是區(qū)間上的“保值函數(shù)”,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,若存在x1 , x2∈R且x1≠x2 , 使得f(x1)=f(x2)成立,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax1(x≥0)的圖象經(jīng)過點(diǎn)(2, ),其中a>0,a≠1.
(1)求a的值;
(2)求函數(shù)f(x)=a2x﹣ax2+8,x∈[﹣2,1]的值域.

查看答案和解析>>

同步練習(xí)冊答案