【題目】為了了解小學(xué)生的體能情況,抽取了某小學(xué)同年級部分學(xué)生進(jìn)行跳繩測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖如圖所示,已知圖中從左到右前三個小組的頻率分別是0.1,0.3,0.4,第一小組的頻數(shù)為5.
(1)求第四小組的頻率;
(2)參加這次測試的學(xué)生人數(shù)是多少?
(3)在這次測試中,學(xué)生跳繩次數(shù)的中位數(shù)落在第幾小組內(nèi)?

【答案】
(1)解:第四小組的頻率=1﹣(0.1+0.3+0.4)=0.2.
(2)解:設(shè)參加這次測試的學(xué)生人數(shù)是n,則有

n= =5÷0.1=50(人).(3)


(3)解:因?yàn)?.1×50=5,0.3×50=15,0.4×50=20,0.2×50=10,

即第一、第二、第三、第四小組的頻數(shù)分別為5、15、20、10,

所以學(xué)生跳繩次數(shù)的中位數(shù)落在第三小組內(nèi).


【解析】(1)由已知中從左到右前三個小組的頻率分別是0.1,0.3,0.4,結(jié)合四組頻率和為1,即可得到第四小組的頻率;(2)由已知中第一小組的頻數(shù)為5及第一組頻率為0.1,代入樣本容量= ,即可得到參加這次測試的學(xué)生人數(shù);(3)由(2)的結(jié)論,我們可以求出第一、第二、第三、第四小組的頻數(shù),再結(jié)合中位數(shù)的定義,即可得到答案.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解頻率分布直方圖的相關(guān)知識,掌握頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息,以及對平均數(shù)、中位數(shù)、眾數(shù)的理解,了解⑴平均數(shù)、眾數(shù)和中位數(shù)都是描述一組數(shù)據(jù)集中趨勢的量;⑵平均數(shù)、眾數(shù)和中位數(shù)都有單位;⑶平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)都有關(guān)系,所以最為重要,應(yīng)用最廣;⑷中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響;⑸眾數(shù)與各組數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個別數(shù)據(jù)的影響,有時是我們最為關(guān)心的數(shù)據(jù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正三棱柱ABC﹣A1B1C1中,點(diǎn)D在邊BC上,AD⊥C1D.
(1)求證:平面ADC1⊥平面BCC1B1;
(2)如果點(diǎn)E是B1C1的中點(diǎn),求證:AE∥平面ADC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax+bx(a>0,b>0,a≠1,b≠1). (Ⅰ)設(shè) ,求方程f(x)=2的根;
(Ⅱ)設(shè) ,函數(shù)g(x)=f(x)﹣2,已知b>3時存在x0∈(﹣1,0)使得g(x0)<0.若g(x)=0有且只有一個零點(diǎn),求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,角A,B,C的對邊分別是a,b,c且滿足(2a﹣c)cosB=bcosC,
(1)求角B的大小;
(2)若△ABC的面積為為 且b= ,求a+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,則輸出的結(jié)果為(
A.2
B.1
C.0
D.﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(3x+ ).
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)若α是第二象限角,f( )= cos(α+ )cos2α,求cosα﹣sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}滿足a2=3,a3+a5=2
(1)求{an}的通項(xiàng)公式;
(2)求{an}的前n項(xiàng)和Sn及Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=asinxbcosx(a、b為常數(shù),a≠0,x∈R)在x= 處取得最小值,則函數(shù)y=f( x)是(
A.偶函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對稱
B.偶函數(shù)且它的圖象關(guān)于點(diǎn) 對稱
C.奇函數(shù)且它的圖象關(guān)于點(diǎn) 對稱
D.奇函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)對任意的x∈(﹣ , )滿足f′(x)cosx+f(x)sinx>0(其中f′(x)是函數(shù)f(x)的導(dǎo)函數(shù)),則下列不等式成立的是(
A. f(﹣ )<f(﹣
B. f( )<f(
C.f(0)>2f(
D.f(0)> f(

查看答案和解析>>

同步練習(xí)冊答案