【題目】已知等比數(shù)列{an}的前n項(xiàng)和為Sn,a1,公比q>0,S1+a1,S3+a3,S2+a2成等差數(shù)列.

1)求{an};

2)設(shè)bn,求數(shù)列{cn}的前n項(xiàng)和Tn.

【答案】1an;(2Tn.

【解析】

1)根據(jù)等差中項(xiàng)的性質(zhì)列方程,并轉(zhuǎn)化為的形式,由此求得的值,進(jìn)而求得數(shù)列的通項(xiàng)公式.

2)利用裂項(xiàng)求和法求得數(shù)列的前項(xiàng)和.

1)由S1+a1,S3+a3,S2+a2成等差數(shù)列,

可得2S3+a3)=S2+a2+S1+a1,

即有2a11+q+2q2)=3a1+2a1q,

化為4q2=1,公比q>0,

解得q.

an n1

2bn,

cn=(n+2bnbn+2=(n+2,

則前n項(xiàng)和Tn=c1+c2+c3+…+cn1+cn

[]

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,,的中點(diǎn),以為折痕將向上折起,變?yōu)?/span>,且平面平面.

1)求三棱錐的體積;

2)求證:;

3)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】天文學(xué)中為了衡量星星的明暗程度,古希臘天文學(xué)家喜帕恰斯(,又名依巴谷)在公元前二世紀(jì)首先提出了星等這個(gè)概念.星等的數(shù)值越小,星星就越亮;星等的數(shù)值越大,它的光就越暗.到了1850年,由于光度計(jì)在天體光度測量中的應(yīng)用,英國天文學(xué)家普森()又提出了衡量天體明暗程度的亮度的概念.天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足.其中星等為的星的亮度為.已知心宿二的星等是1.00.“天津四的星等是1.25.“心宿二的亮度是天津四倍,則與最接近的是(當(dāng)較小時(shí), )

A.1.24B.1.25C.1.26D.1.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),圓與圓外切于原點(diǎn),且兩圓圓心的距離,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.

(1)求圓和圓的極坐標(biāo)方程;

(2)過點(diǎn)的直線,與圓異于點(diǎn)的交點(diǎn)分別為點(diǎn),與圓異于點(diǎn)的交點(diǎn)分別為點(diǎn),且,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:橢圓的離心率為,且,過左焦點(diǎn)作一條直線交橢圓于、兩點(diǎn),過線段的中點(diǎn)的垂線交軸于點(diǎn).

1)求橢圓方程;

2)當(dāng)面積最大時(shí),求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過橢圓的四個(gè)頂點(diǎn)與坐標(biāo)軸垂直的四條直線圍成的矩形是第一象限內(nèi)的點(diǎn))的面積為,且過橢圓的右焦點(diǎn)的傾斜角為的直線過點(diǎn)

1)求橢圓的標(biāo)準(zhǔn)方程

2)若射線與橢圓的交點(diǎn)分別為.當(dāng)它們的斜率之積為時(shí),試問的面積是否為定值?若為定值,求出此定值;若不為定值,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“干支紀(jì)年法”是中國歷法上自古以來使用的紀(jì)年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”!疤旄伞币浴凹住弊珠_始,“地支”以“子”字開始,兩者按干支順序相配,組成了干支紀(jì)年法,其相配順序?yàn)椋杭鬃、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸未,甲申、乙酉、丙戌…癸巳,…,共得?0個(gè)組合,稱六十甲子,周而復(fù)始,無窮無盡。2019年是“干支紀(jì)年法”中的己亥年,那么2026年是“干支紀(jì)年法”中的

A. 甲辰年B. 乙巳年C. 丙午年D. 丁未年

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)討論函數(shù)的單調(diào)性;

2)若,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的上頂點(diǎn)為,右焦點(diǎn)為F,連結(jié)TF并延長與橢圓交于點(diǎn)S,且.

1)求橢圓的方程;

2)已知直線x軸交于點(diǎn)M,過點(diǎn)M的直線AB交于A、B兩點(diǎn),點(diǎn)P為直線上任意一點(diǎn),設(shè)直線AB與直線交于點(diǎn)N,記PA,PB,PN的斜率分別為,,則是否存在實(shí)數(shù),使得恒成立?若是,請求出的值;若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案