如圖,是圓的內(nèi)接四邊形,,過點(diǎn)的圓的切線與的延長線交于點(diǎn),證明:
(Ⅰ)
(II)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,A、B是兩圓的交點(diǎn),AC是小圓的直徑,D和E分別是CA和CB的延長線與大圓的交點(diǎn),已知AC=4,BE=10,且BC=AD,求DE的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,、是圓的半徑,且,是半徑上一點(diǎn):延長交圓于點(diǎn),過作圓的切線交的延長線于點(diǎn).求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,AB是圓O的直徑,C,D是圓O上兩點(diǎn),AC與BD相交于點(diǎn)E,GC,GD是圓O的切線,點(diǎn)F在DG的延長線上,且。求證:
(Ⅰ)D、E、C、F四點(diǎn)共圓; (Ⅱ)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知切⊙于點(diǎn)E,割線PBA交⊙于A、B兩點(diǎn),∠APE的平分線和AE、BE分別交于點(diǎn)C、D.
求證:
(Ⅰ);
(Ⅱ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,AB是⊙O的直徑,C、E為⊙O上的點(diǎn),CA平分∠BAE,CF⊥AB, F是垂足,CD⊥AE,交AE延長線于D.
(I)求證:DC是⊙O的切線;
(Ⅱ)求證:AF.FB=DE.DA.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知:如右圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過點(diǎn)D作AC的平行線DE,交BA的延長線于點(diǎn)E.求證:(1)△ABC≌△DCB (2)DE·DC=AE·BD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1,在△ABC中,點(diǎn)P為BC邊中點(diǎn),直線a繞頂點(diǎn)A旋轉(zhuǎn),若點(diǎn)B,P在直線a的異側(cè),BM⊥直線a于點(diǎn)M.CN⊥直線a于點(diǎn)N,連接PM,PN.
(1)延長MP交CN于點(diǎn)E(如圖2).
①求證:△BPM≌△CPE;
②求證:PM=PN;
(2)若直線a繞點(diǎn)A旋轉(zhuǎn)到圖3的位置時,點(diǎn)B,P在直線a的同側(cè),其它條件不變,此時PM=PN還成立嗎?若成立,請給予證明;若不成立,請說明理由;
(3)若直線a繞點(diǎn)A旋轉(zhuǎn)到與BC邊平行的位置時,其它條件不變,請直接判斷四邊形MBCN的形狀及此時PM=PN還成立嗎?不必說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com