【題目】已知三棱錐如圖所示,其中, 二面角的大小為.

1證明: ;

2為線段的中點(diǎn), 求二面角的余弦值.

【答案】1見解析.2.

【解析】【試題分析】1由于,根據(jù)面面垂直的性質(zhì)定理可知2平面,進(jìn)而得到.2設(shè),利用求出,由此在點(diǎn)建立空間直角坐標(biāo)系,通過計(jì)算平面和平面的法向量,來求得二面角的余弦值.

【試題解析】

1)證明:因?yàn)槎娼?/span>的大小為故平面平面,

又平面平面, ,所以平面,

因?yàn)?/span>平面所以.

2)解:設(shè),.

1)可知, ,因?yàn)?/span>所以.

因?yàn)?/span>, ,

所以,所以, .

解得,, , .

如圖所示,建立空間直角坐標(biāo)系, , ,

,

所以, .

1)知平面的法向量.

設(shè)平面的法向量,.

,, 所以.

所以.

由圖可知二面角的平面角為銳角,故二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,若acos2ccos2b,那么a,b,c的關(guān)系是(

A.a+bcB.a+c2bC.b+c2aD.abc

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體是圓柱的一部分,它是由矩形及其內(nèi)部邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)得到的,點(diǎn)是弧上的一點(diǎn),點(diǎn)是弧的中點(diǎn).

1)求證:平面平面;

(2)當(dāng)時,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲廠根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)產(chǎn)品(百臺),其總成本為(萬元),其中固定成本為2.8萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為1萬元(總成本=固定成本+生產(chǎn)成本),銷售收入(萬元)滿足,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,完成下列問題:

1)寫出利潤函數(shù)的解析式(利潤=銷售收入-總成本);

2)甲廠生產(chǎn)多少臺產(chǎn)品時,可使盈利最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,直線與拋物線交于兩點(diǎn).

(Ⅰ)若直線過焦點(diǎn),且與圓交于(其中軸同側(cè)),求證: 是定值;

(Ⅱ)設(shè)拋物線點(diǎn)的切線交于點(diǎn),試問: 軸上是否存在點(diǎn),使得為菱形?若存在,請說明理由并求此時直線的斜率和點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=,x∈(-2,2).

(1) 判斷f(x)的奇偶性并說明理由;

(2) 求證:函數(shù)f(x)在(-2,2)上是增函數(shù);

(3) 若f(2+a)+f(1-2a)>0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校數(shù)學(xué)與統(tǒng)計(jì)學(xué)院為了對2018年錄取的大一新生有針對性地進(jìn)行教學(xué).從大一新生中隨機(jī)抽取40名,對他們在2018年高考的數(shù)學(xué)成績進(jìn)行調(diào)查,統(tǒng)計(jì)發(fā)現(xiàn)40名新生的數(shù)學(xué)分?jǐn)?shù)分布在內(nèi).當(dāng)時,其頻率.

(Ⅰ)求的值;

(Ⅱ)請?jiān)诖痤}卡中畫出這40名新生高考數(shù)學(xué)分?jǐn)?shù)的頻率分布直方圖,并估計(jì)這40名新生的高考數(shù)學(xué)分?jǐn)?shù)的平均數(shù);

(Ⅲ)從成績在100~120分的學(xué)生中,用分層抽樣的方法從中抽取5名學(xué)生,再從這5名學(xué)生中隨機(jī)選兩人甲、乙,記甲、乙的成績分別為,求概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)1 (a>0,a≠1)f(0)0.

(1)a的值;

(2)若函數(shù)g(x)(2x1)·f(x)k有零點(diǎn),求實(shí)數(shù)k的取值范圍;

(3)當(dāng)x(0,1)時,f(x)>m·2x2恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知長方體, 的中點(diǎn), 在棱 , .

1若異面直線互相垂直,的長

2當(dāng)四棱錐的體積為,求證直線平面.

查看答案和解析>>

同步練習(xí)冊答案