已知ab,c( 0,1 ),且a + b + c = 2,求證:1< ab + bc + ca

 

答案:
解析:

證明:a,b,c∈( 0,1 ),a + b + c = 2

 (1-a )(1-b ) (1-c) = 1-(a + b + c) + (ab + bc + ca)-abc

= (ab + bc + ca)-(1 + abc) > 0

 ab + bc + ca > 1+ abc > 1;
         4-3(ab + bc + ca) = ( a + b + c )2 -3 (ab + bc + ca)
       =

 ab + bc + ca

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B、C是△ABC的三個(gè)內(nèi)角,向量a=(sin
A+B
2
,sinA)
,b=(cox
c
2
,sinB)
,a.b=
1
2
,則tanA•tanB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B、C是銳角△ABC的三個(gè)內(nèi)角,向量
p
=(-sinA,1)
q
=(1,cosB)
,則
p
q
的夾角是( 。
A、銳角B、鈍角C、直角D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
b
,
c
是空間的一個(gè)基底,且實(shí)數(shù)x,y,z使x
a
+y
b
+z
c
=
0
,則x2+y2+z2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B、C的坐標(biāo)分別為A(4,0)、B(0,4)、C(3cosα,3sinα)
(Ⅰ)若a∈(-π,0),且|
AC
|=|
BC
|.求角α的值;
(Ⅱ)若
AC
BC
=0.求
2sina+sin2a
1+tana
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c都是正數(shù),且a,b,c成等比數(shù)列,求證:a2+b2+c2>(a-b+c)2

查看答案和解析>>

同步練習(xí)冊(cè)答案