已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
過點(diǎn)(
3
,
2
2
)
,它的離心率為
6
2
,P、Q分別在雙曲線的兩條漸近線上,M是線段PQ中點(diǎn),|PQ|=2
2

(Ⅰ)求雙曲線及其漸近線方程;
(Ⅱ)求點(diǎn)M的軌跡C的方程;
(Ⅲ)過C左焦點(diǎn)F1的直線l與C相交于點(diǎn)A、B,F(xiàn)2為C的右焦點(diǎn),求△ABF2面積最大時(shí)
F2A
F2B
的值.
(Ⅰ)∵雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
過點(diǎn)(
3
,
2
2
)
,它的離心率為
6
2
,
3
a2
-
1
2b2
=1
,且
a2+b2
a2
=(
6
2
)2
,
解得a2=2,b2=1,
∴雙曲線方程是
x2
2
-y2=1
,
它的漸近線方程是y=
1
2
x,y=-
1
2
x
.…(4分)
(Ⅱ)由(Ⅰ)可知,不妨設(shè)P(x1
x1
2
),Q(x2,-
x2
2
)
,
設(shè)M(x,y),則有x1+x2=2x,
x1
2
-
x2
2
=2y

|PQ|=2
2
,∴(x1-x2)2+(
x1
2
+
x2
2
)2=8
,
(2
2
y)2+(
2x
2
)2=8

化簡得軌跡C的方程為
x2
4
+y2=1
.…(8分)
(Ⅲ)由(Ⅱ)得F1(-
3
,0),F2(
3
,0)
,
根據(jù)題意直線l與x軸不能重合,
∴設(shè)l的方程為x=ky-
3
,設(shè)A(x3,y3),B(x4,y4).
x=ky-
3
代入
x2
4
+y2=1
,
化簡并整理得(k2+4)y2-2
3
ky-1=0

y3+y4=
2
3
k
k2+4
,y3y4=-
1
k2+4

|y3-y4|=
(y3+y4)2-4y3y4
=
(
2
3
k
k2+4
)
2
+
4
k2+4

=4
1
(k2+1)+
9
k2+1
+6
,
∴△ABF2面積S=
1
2
|F1F2|•|y3-y4|=4
3
1
(k2+1)+
9
k2+1
+6

4
3
1
2
(k2+1)•
9
k2+1
+6
=2

當(dāng)且僅當(dāng)k2+1=
9
k2+1
時(shí),即等號(hào)成立.
∴當(dāng)k=
2
時(shí),y3+y4=
6
3
,y3y4=-
1
6
,
x3+x4=k(y3+y4)-2
3
=-
4
3
3
,x3x4=(ky3-
3
)(ky4-
3
)=k2y3y4-
3
k(y3+y4)+3=
2
3
,
F2A
F2B
=(x3-
3
,y3)•(x4-

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),經(jīng)過點(diǎn)(3,-2)與向量(-1,1)平行的直線l交橢圓C于A,B兩點(diǎn),交x軸于M點(diǎn),又
AM
=2
MB

(Ⅰ)求橢圓C長軸長的取值范圍;
(Ⅱ)若|
AB
|=
3
2
2
,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦點(diǎn)為F1(-1,0),F(xiàn)2(1,0),且經(jīng)過點(diǎn)P(1,
3
2
)

(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)過F1的直線l與橢圓C交于A、B兩點(diǎn),問在橢圓C上是否存在一點(diǎn)M,使四邊形AMBF2為平行四邊形,若存在,求出直線l的方程,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線C:y=-x2+2x,在點(diǎn)A(0,0),B(2,0)分別作拋物線的切線L1、L2
(1)求切線L1和L2的方程;
(2)求拋物線C與切線L1和L2所圍成的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓的方程為x2+y2=4,過點(diǎn)M(2,4)作圓的兩條切線,切點(diǎn)分別為A1、A2,直線A1A2恰好經(jīng)過橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右頂點(diǎn)和上頂點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線x=-1與橢圓相交于A、B兩點(diǎn),P是橢圓上異于A、B的任意一點(diǎn),直線AP、BP分別交定直線l:x=-4于兩點(diǎn)Q、R,求證
OQ
OR
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線y2=2px(p>0)上縱坐標(biāo)為-p的點(diǎn)M到焦點(diǎn)的距離為2.
(Ⅰ)求p的值;
(Ⅱ)如圖,A,B,C為拋物線上三點(diǎn),且線段MA,MB,MC與x軸交點(diǎn)的橫坐標(biāo)依次組成公差為1的等差數(shù)列,若△AMB的面積是△BMC面積的
1
2
,求直線MB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的中心在原點(diǎn),焦點(diǎn)y在軸上,焦距為2
3
,且過點(diǎn)M(-
13
4
,
3
2
)

(1)求橢圓C的方程;
(2)若過點(diǎn)N(
1
2
,1)
的直線l交橢圓C于A、B兩點(diǎn),且N恰好為AB中點(diǎn),能否在橢圓C上找到點(diǎn)D,使△ABD的面積最大?若能,求出點(diǎn)D的坐標(biāo);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,
ADB
為半圓,AB為半圓直徑,O為半圓圓心,且OD⊥AB,Q為線段OD的中點(diǎn),已知|AB|=4,曲線C過Q點(diǎn),動(dòng)點(diǎn)P在曲線C上運(yùn)動(dòng)且保持|PA|+|PB|的值不變.
(Ⅰ)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線C的方程;
(Ⅱ)過點(diǎn)B的直線l與曲線C交于M、N兩點(diǎn),與OD所在直線交于E點(diǎn),若
EM
=λ1
MB
,
EN
=λ2
NB
,求證:λ1+λ2
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)集合A={(x,y)|y=2x-1,x∈N*},B={(x,y)|y=ax2-ax+a,x∈N*},問是否存在非零整數(shù)a,使A∩B≠∅?若存在,請(qǐng)求出a的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案