【題目】已知函數(shù)
(1)若不等式f(x)﹣f(x+m)≤1恒成立,求實數(shù)m的最大值;
(2)當a< 時,函數(shù)g(x)=f(x)+|2x﹣1|有零點,求實數(shù)a的取值范圍.

【答案】
(1)解:∵ ,∴ ,

∴f(x)﹣f(x+m)=|x﹣a|﹣|x+m﹣a|≤|m|,

∴|m|≤1,∴﹣1≤m≤1,∴實數(shù)m的最大值為1


(2)解:當 時, =

,

∴實數(shù)a的取值范圍是


【解析】(1)若不等式f(x)﹣f(x+m)≤1恒成立,利用f(x)﹣f(x+m)=|x﹣a|﹣|x+m﹣a|≤|m|,求實數(shù)m的最大值;(2)當a< 時,函數(shù)g(x)=f(x)+|2x﹣1|有零點, ,可得 ,即可求實數(shù)a的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭純收入y(單位:千元)的數(shù)據(jù)如下表:

年份

2007

2008

2009

2010

2011

2012

2013

年份代號t

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y關(guān)于t的線性回歸方程;

(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2015年農(nóng)村居民家庭人均純收入.

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中曲線 經(jīng)伸縮變換 后得到曲線C2 , 在以O(shè)為極點,x軸的正半軸為極軸的極坐標系中,曲線C3的極坐標方程為
(1)求曲線C2的參數(shù)方程和C3的直角坐標方程;
(2)設(shè)M為曲線C2上的一點,又M向曲線C3引切線,切點為N,求|MN|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合M={(x,y)|y=f(x)},若對于任意實數(shù)對(x1 , y1)∈M,存在(x2 , y2)∈M,使x1x2+y1y2=0成立,則稱集合M是“垂直對點集”,給出下列四個集合: ①M={(x,y)|y= };
②M={(x,y)|y=sinx+1};
③={(x,y)|y=2x﹣2};
④M={(x,y)|y=log2x}
其中是“垂直對點集”的序號是(
A.②③④
B.①②④
C.①③④
D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: 的左右焦點與其短軸的一個端點是正三角形的三個頂點,點D 在橢圓C上,直線l:y=kx+m與橢圓C相交于A、P兩點,與x軸、y軸分別相交于點N和M,且PM=MN,點Q是點P關(guān)于x軸的對稱點,QM的延長線交橢圓于點B,過點A、B分別作x軸的垂涎,垂足分別為A1、B1
(1)求橢圓C的方程;
(2)是否存在直線l,使得點N平分線段A1B1?若存在,求求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求處的切線方程;

(2)討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一緝私艇巡航至距領(lǐng)海邊界線l(一條南北方向的直線)3.8海里的A處,發(fā)現(xiàn)在其北偏東30°方向相距4海里的B處有一走私船正欲逃跑,緝私艇立即追擊,已知緝私艇的最大航速是走私船最大航速的3倍,假設(shè)緝私艇和走私船均按直線方向以最大航速航行.
(1)若走私船沿正東方向逃離,試確定緝私艇的追擊方向,使得用最短時間在領(lǐng)海內(nèi)攔截成功;(參考數(shù)據(jù):sin17°≈ ≈5.7446)
(2)問:無論走私船沿何方向逃跑,緝私艇是否總能在領(lǐng)海內(nèi)成功攔截?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xex﹣a(lnx+x).
(1)若函數(shù)f(x)恒有兩個零點,求a的取值范圍;
(2)若對任意x>0,恒有不等式f(x)≥1成立. ①求實數(shù)a的值;
②證明:x2ex>(x+2)lnx+2sinx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xoy中,曲線C的參數(shù)方程為 (θ為參數(shù)),直線l的參數(shù)方程為 (t為參數(shù))以坐標原點O為極點,x軸的正半軸為極軸的極坐標系.
(1)寫出直線l的普通方程以及曲線C的極坐標方程;
(2)若直線l與曲線C的兩個交點分別為M,N,直線l與x軸的交點為P,求|PM||PN|的值.

查看答案和解析>>

同步練習(xí)冊答案