【題目】現(xiàn)要完成下列3項(xiàng)抽樣調(diào)查:①?gòu)?/span>20罐奶粉中抽取4罐進(jìn)行食品安全衛(wèi)生檢查;②從某社區(qū)100戶高收入家庭,270戶中等收入家庭,80戶低收入家庭中選出45戶進(jìn)行消費(fèi)水平調(diào)查;③某中學(xué)報(bào)告廳有28排,每排有35個(gè)座位,一次報(bào)告會(huì)恰好坐滿了聽(tīng)眾,報(bào)告會(huì)結(jié)束后,為了聽(tīng)取意見(jiàn),需要請(qǐng)28名聽(tīng)眾進(jìn)行座談.較為合理的抽樣方法是( )
A.①系統(tǒng)抽樣;②簡(jiǎn)單隨機(jī)抽樣;③分層抽樣
B.①簡(jiǎn)單隨機(jī)抽樣;②分層抽樣;③系統(tǒng)抽樣
C.①分層抽樣;②系統(tǒng)抽樣;③簡(jiǎn)單隨機(jī)抽樣
D.①簡(jiǎn)單隨機(jī)抽樣;②系統(tǒng)抽樣;③分層抽樣
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某部門(mén)在同一上班高峰時(shí)段對(duì)甲、乙兩地鐵站各隨機(jī)抽取了50名乘客,統(tǒng)計(jì)其乘車(chē)等待時(shí)間(指乘客從進(jìn)站口到乘上車(chē)的時(shí)間,乘車(chē)等待時(shí)間不超過(guò)40分鐘).將統(tǒng)計(jì)數(shù)據(jù)按分組,制成頻率分布直方圖:
假設(shè)乘客乘車(chē)等待時(shí)間相互獨(dú)立.
(1)在上班高峰時(shí)段,從甲站的乘客中隨機(jī)抽取1人,記為;從乙站的乘客中隨機(jī)抽取1人,記為.用頻率估計(jì)概率,求“乘客,乘車(chē)等待時(shí)間都小于20分鐘”的概率;
(2)從上班高峰時(shí)段,從乙站乘車(chē)的乘客中隨機(jī)抽取3人,表示乘車(chē)等待時(shí)間小于20分鐘的人數(shù),用頻率估計(jì)概率,求隨機(jī)變量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,直線,若直線上存在點(diǎn),過(guò)點(diǎn)引圓的兩條切線,使得,則實(shí)數(shù)的取值范圍是( )
A. B. [,]
C. D. )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓的離心率為,且過(guò)點(diǎn).
(1)求橢圓的方程;
(2)設(shè)點(diǎn),點(diǎn)在軸上,過(guò)點(diǎn)的直線交橢圓交于,兩點(diǎn).
①若直線的斜率為,且,求點(diǎn)的坐標(biāo);
②設(shè)直線,,的斜率分別為,,,是否存在定點(diǎn),使得恒成立?若存在,求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】順次連接橢圓的四個(gè)頂點(diǎn)恰好構(gòu)成了一個(gè)邊長(zhǎng)為且面積為的菱形。
(1)求橢圓的方程;
(2),是橢圓上的兩個(gè)不同點(diǎn),若直線,的斜率之積為(以為坐標(biāo)原點(diǎn)),線段上有一點(diǎn)滿足,連接并延長(zhǎng)交橢圓于點(diǎn),求橢圓的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)擬建一個(gè)糧倉(cāng),如圖1所示,糧倉(cāng)的軸截而如圖2所示,ED=EC,ADBC,BC⊥AB,EF⊥AB,CD交EF于點(diǎn)G,EF=FC=10m.
(1)設(shè)∠CFB=θ,求糧倉(cāng)的體積關(guān)于θ的函數(shù)關(guān)系式;
(2)當(dāng)sinθ為何值時(shí),糧倉(cāng)的體積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列滿足對(duì)任意的恒成立,為其前項(xiàng)的和,且.
(1)求數(shù)列的通項(xiàng);
(2)數(shù)列滿足,其中.
①證明:數(shù)列為等比數(shù)列;
②求集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓的圓心在直線上,且圓與:相切于點(diǎn).過(guò)點(diǎn)作兩條斜率之積為-2的直線分別交圓于,與,.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)設(shè)線段,的中點(diǎn)分別為,,證明:直線恒過(guò)定點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com