【題目】已知直線l1的方程為3x+4y﹣12=0.

(1)若直線l2與l1平行,且過點(﹣1,3),求直線l2的方程;

(2)若直線l2與l1垂直,且l2與兩坐標軸圍成的三角形面積為4,求直線l2的方程.

【答案】(1);(2)

【解析】分析:(1)根據(jù)平行直線的斜率相等,先求出斜率,點斜式求得直線方程;(2)根據(jù)垂直關系求出直線的斜率,得到它在坐標軸上的截距,根據(jù)與兩坐標軸圍成的三角形面積為4出截距,即得直線方程.

詳解:(1)由直線l2l1平行,可設l2的方程為3x+4y+m=0,以x=﹣1,y=3代入,得﹣3+12+m=0,即得m=﹣9,

直線l2的方程為3x+4y﹣9=0.

(2)由直線l2l1垂直,可設l2的方程為4x﹣3y+n=0,

y=0,得x=﹣,令x=0,得y=,

故三角形面積S=|﹣|||=4

n2=96,即n=±4

直線l2的方程是4x﹣3y+4=04x﹣3y﹣4=0.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且(c﹣2a) =c
(1)求B的大小;
(2)已知f(x)=cosx(asinx﹣2cosx)+1,若對任意的x∈R,都有f(x)≤f(B),求函數(shù)f(x)的單調遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知動直線過點,且與圓交于兩點.

(1)若直線的斜率為,求的面積;

(2)若直線的斜率為,點是圓上任意一點,求的取值范圍;

(3)是否存在一個定點(不同于點),對于任意不與軸重合的直線,都有平分,若存在,求出定點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合,.記為同時滿足下列條件的集合的個數(shù):

②若,則③若,則

則(___________

的解析式(用表示)___________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|+|x+5﹣a|
(1)若不等式f(x)﹣|x﹣a|≤2的解集為[﹣5,﹣1],求實數(shù)a的值;
(2)若x0∈R,使得f(x0)<4m+m2 , 求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=asinxcos2x+1(a,b∈R).

(1)當a=1,且 時,求f(x)的值域;

(2)若存在實數(shù) 使得成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我校高一年級研究性學習小組共有9名學生,其中有3名男生和6名女生.在研究性學習過程中,要進行兩次匯報活動(即開題匯報和結題匯報),每次匯報都從這9名學生中隨機選1 人作為代表發(fā)言.設每人每次被選中與否均互不影響.

1求兩次匯報活動都由小組成員甲發(fā)言的概率;

2為男生發(fā)言次數(shù)與女生發(fā)言次數(shù)之差的絕對值,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)和函數(shù)在區(qū)間上均為增函數(shù),求實數(shù)的取值范圍;

2)若方程有唯一解,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,點在拋物線上,且。

求拋物線的標準方程及實數(shù)的值;

直線過拋物線的焦點,且與拋物線交于兩點,若為坐標原點)的面積為,求直線的方程.

查看答案和解析>>

同步練習冊答案