【題目】已知D(x0 , y0)為圓O:x2+y2=12上一點,E(x0 , 0),動點P滿足 = + ,設動點P的軌跡為曲線C.
(1)求曲線C的方程;
(2)若動直線l:y=kx+m與曲線C相切,過點A1(﹣2,0),A2(2,0)分別作A1M⊥l于M,A2N⊥l于N,垂足分別是M,N,問四邊形A1MNA2的面積是否存在最值?若存在,請求出最值及此時k的值;若不存在,說明理由.
【答案】
(1)
解:由題意設P(x,y),則 = + (x0,0)= .
∴ ,y= ,解得x0= x,y0=2y,
又 + =12,代入可得:3x2+4y2=12,化為: =1.
(2)
聯(lián)立 ,可得(3+4k2)x2+8kmx+4m2﹣12=0,
△=64k2m2﹣4(3+4k2)(4m2﹣12)=48(3+4k2﹣m2)=0,
可得:m2=3+4k2.A1(﹣2,0)到l的距離d1= ,
A2(2,0)到l的距離d2= ,
則|MN|2= ﹣ =16﹣[ + ﹣ ]
=16﹣ =16﹣ =16﹣ = .
= + + = = .
∴四邊形A1MNA2的面積S= = =4 =4 ≤4 .
當k=0時,取等號.
【解析】(1)由題意設P(x,y),則 = + (x0 , 0)= .可得 ,y= ,解得x0= x,y0=2y,又 + =12,代入圓的方程即可得出.(2)聯(lián)立 ,可得(3+4k2)x2+8kmx+4m2﹣12=0,△=0,可得:m2=3+4k2 . A1(﹣2,0)到l的距離d1= ,A2(2,0)到l的距離d2= ,可得|MN|2= ﹣ = . = .可得四邊形A1MNA2的面積S= ,利用二次函數(shù)的單調(diào)性即可得出.
科目:高中數(shù)學 來源: 題型:
【題目】已知直線C1: ( t 為參數(shù)),曲線C2: (r>0,θ為參數(shù)).
(1)當r=1時,求C 1 與C2的交點坐標;
(2)點P 為曲線 C2上一動點,當r= 時,求點P 到直線C1距離最大時點P 的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的離心率為 ,以原點O為圓心,橢圓C的長半軸為半徑的圓與直線2x﹣ y+6=0相切.
(1)求橢圓C的標準方程;
(2)已知點A,B為動直線y=k(x﹣2)(k≠0)與橢圓C的兩個交點,問:在x軸上是否存在點E,使 2+ 為定值?若存在,試求出點E的坐標和定值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在數(shù)列{an}中, (c為常數(shù),n∈N*),且a1 , a2 , a5成公比不為1的等比數(shù)列. (Ⅰ)求證:數(shù)列 是等差數(shù)列;
(Ⅱ)求c的值;
(Ⅲ)設bn=anan+1 , 求數(shù)列{bn}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=x2+|x﹣m|(m為實數(shù))是偶函數(shù),記a=f(log e),b=f(log3π),c=f(em)(e為自然對數(shù)的底數(shù)),則a,b,c的大小關系( )
A.a<b<c
B.a<c<b
C.c<a<b
D.c<b<a
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知F是雙曲線 ﹣ =1(a>0,b>0)的右焦點,A,B分別為其左、右頂點.O為坐標原點,D為其上一點,DF⊥x軸.過點A的直線l與線段DF交于點E,與y軸交于點M,直線BE與y軸交于點N,若3|OM|=2|ON|,則雙曲線的離心率為( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的離心率為 ,四個頂點構(gòu)成的菱形的面積是4,圓M:(x+1)2+y2=r2(0<r<1).過橢圓C的上頂點A作圓M的兩條切線分別與橢圓C相交于B,D兩點(不同于點A),直線AB,AD的斜率分別為k1 , k2 .
(1)求橢圓C的方程;
(2)當r變化時,①求k1k2的值;②試問直線BD是否過某個定點?若是,求出該定點;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國古代有計算多項式值的秦九韶算法,如圖是實現(xiàn)該算法的程序框圖.執(zhí)行該程序框圖,若輸入的x=3,n=3,輸入的a依次為由小到大順序排列的質(zhì)數(shù)(從最小質(zhì)數(shù)開始), 直到結(jié)束為止,則輸出的s=( )
A.9
B.27
C.32
D.103
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列命題:
①存在實數(shù)α使 .
②直線 是函數(shù)y=sinx圖象的一條對稱軸.
③y=cos(cosx)(x∈R)的值域是[cos1,1].
④若α,β都是第一象限角,且α>β,則tanα>tanβ.
其中正確命題的題號為( )
A.①②
B.②③
C.③④
D.①④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com