【題目】已知命題p:x0∈R,x02﹣2x0+3≤0的否定是x∈R,x2﹣2x+3>0,命題q:雙曲線 ﹣y2=1的離心率為2,則下列命題中為真命題的是(
A.p∨q
B.¬p∧q
C.¬p∨q
D.p∧q

【答案】A
【解析】解:命題p:x0∈R,x02﹣2x0+3≤0的否定是x∈R,x2﹣2x+3>0,正確,p是真命題,

雙曲線 ﹣y2=1中,a=2,c= = ,

則離心率e= = ,故q是假命題,

則p∨q是真命題其余為假命題,

故選:A

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解復(fù)合命題的真假的相關(guān)知識(shí),掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時(shí)為真,其他情況時(shí)為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時(shí)為假,其他情況時(shí)為真.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在(1+x+x2n= x x2+… xr+… x2n1 x2n的展開式中,把D ,D ,D …,D …,D 叫做三項(xiàng)式系數(shù)
(1)求D 的值
(2)根據(jù)二項(xiàng)式定理,將等式(1+x)2n=(1+x)n(x+1)n的兩邊分別展開可得,左右兩邊xn的系數(shù)相等,即C =(C 2+(C 2+(C 2+…+(C 2 , 利用上述思想方法,請計(jì)算D C ﹣D C +D C ﹣…+(﹣1)rD C +.. C C 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=﹣4x3+kx,對任意的x∈[﹣1,1],總有f(x)≤1,則實(shí)數(shù)k的取值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:關(guān)于x的方程x2﹣ax+4=0有實(shí)根;命題q:關(guān)于x的函數(shù)y=2x2+ax+4在[3,+∞)上是增函數(shù),若p∧q是真命題,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在區(qū)間上有最大值和最小值 .

(1)求的值;

(2)若不等式上有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1) 判斷函數(shù)的單調(diào)性并給出證明;

(2)若存在實(shí)數(shù)使函數(shù)是奇函數(shù),求;

(3)對于(2)中的,若,當(dāng)時(shí)恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面ABCD是菱 形,PA=PB,且側(cè)面PAB⊥平面ABCD,點(diǎn)E是AB的中點(diǎn).

(1)求證:PE⊥AD;

(2)若CA=CB,求證:平面PEC⊥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (其中為自然對數(shù)的底數(shù), )

(1) 設(shè)函數(shù),討論函數(shù)的零點(diǎn)個(gè)數(shù);

(2) 時(shí),不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在正四棱錐中, 為側(cè)棱的中點(diǎn), 連接相交于點(diǎn)。

(1)證明: ;

(2)證明: ;

(3)設(shè),若質(zhì)點(diǎn)從點(diǎn)沿平面與平面的表 面運(yùn)動(dòng)到點(diǎn)的最短路徑恰好經(jīng)過點(diǎn)求正四棱錐 的體積。

查看答案和解析>>

同步練習(xí)冊答案