(本題16分)函數(shù)在同一個周期內(nèi),當(dāng)時取最大值1,當(dāng)時,取最小值。
(1)求函數(shù)的解析式
(2)函數(shù)的圖象經(jīng)過怎樣的變換可得到的圖象?
(3)若函數(shù)滿足方程求在內(nèi)的所有實數(shù)根之和.
(1)函數(shù)
(2)的圖象向右平移個單位得的圖象
再由圖象上所有點的橫坐標(biāo)變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052023251557811554/SYS201205202326545625828022_DA.files/image007.png">.縱坐標(biāo)不變,得到的圖象,
(3)所有實數(shù)之和為
【解析】解:(1)
又因
又
函數(shù)
(2)的圖象向右平移個單位得的圖象
再由圖象上所有點的橫坐標(biāo)變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052023251557811554/SYS201205202326545625828022_DA.files/image007.png">.縱坐標(biāo)不變,得到的圖象,
(3)的周期為
在內(nèi)恰有3個周期,
并且方程在內(nèi)有6個實根且
同理,
故所有實數(shù)之和為
科目:高中數(shù)學(xué) 來源:2012屆江蘇省泰州中學(xué)高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本題滿分16分)設(shè)函數(shù)y=f(x)對任意實數(shù)x,都有f(x)=2f(x+1),當(dāng)x∈[0,1]時,f(x)=x2(1-x).
(Ⅰ)已知n∈N+,當(dāng)x∈[n,n+1]時,求y=f(x)的解析式;
(Ⅱ)求證:對于任意的n∈N+,當(dāng)x∈[n,n+1]時,都有|f(x)|≤;
(Ⅲ)對于函數(shù)y=f(x)(x∈[0,+∞,若在它的圖象上存在點P,使經(jīng)過點P的切線與直線x+y=1平行,那么這樣點有多少個?并說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷 題型:解答題
(本題16分)已知函數(shù)在定義域上是奇函數(shù),(其中且).
(1)求出的值,并求出定義域;
(2)判斷在上的單調(diào)性,并用定義加以證明;
(3)當(dāng)時,的值域范圍恰為,求及的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江蘇省09-10學(xué)年度第一學(xué)期第三次月考高一數(shù)學(xué) 題型:解答題
(本題16分)函數(shù)在同一個周期內(nèi),當(dāng)時取最大值1,當(dāng)時,取最小值。
(1)求函數(shù)的解析式
(2)函數(shù)的圖象經(jīng)過怎樣的變換可得到的圖象?
(3)若函數(shù)滿足方程求在內(nèi)的所有實數(shù)根之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年江蘇省南通市高一上學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題
(本題滿分16分)設(shè)函數(shù) R 的最小值為-a,兩個實根為、 .[來源:Z。xx。k.Com]
(1)求的值;
(2)若關(guān)于的不等式解集為,函數(shù)在上不存在最小值,求的取值范圍;
(3)若,求b的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com