【題目】已知正項(xiàng)等比數(shù)列{an}滿足a1 , 2a2 , a3+6成等差數(shù)列,且a42=9a1a5 .
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè) ,求數(shù)列{bn}的前n項(xiàng)和Tn .
【答案】解:(Ⅰ)設(shè)正項(xiàng)等比數(shù)列{an}的公比為q(q>0)
由 ,
因?yàn)閝>0,所以q=3.
又因?yàn)閍1,2a2,a3+6成等差數(shù)列,
所以a1+(a3+6)﹣4a2=0a1+9a1+6﹣12a1=0a1=3
所以數(shù)列{an}的通項(xiàng)公式為
(Ⅱ)依題意得 ,則
,
,
由﹣得 = ,
所以數(shù)列{bn}的前n項(xiàng)和
【解析】(1)根據(jù)等比數(shù)列的性質(zhì)“若m+n=p+q,則aman=apaq”將a42=9a1a5轉(zhuǎn)化后可求出q,再根據(jù)“a、b、c成等差數(shù)列2b=a+c”列出等式,然后根據(jù)等比數(shù)列通項(xiàng)公式將該等式中的各項(xiàng)都用a1和q表示,可求出a1;(2)利用錯(cuò)位相減法即可求解.
【考點(diǎn)精析】掌握等比數(shù)列的通項(xiàng)公式(及其變式)和數(shù)列的前n項(xiàng)和是解答本題的根本,需要知道通項(xiàng)公式:;數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程kx2﹣2lnx﹣k=0有兩個(gè)不等實(shí)根,則實(shí)數(shù)k的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市舉行“中學(xué)生詩詞大賽”海選,規(guī)定:成績(jī)大于或等于90分的具有參賽資格.某校有800名學(xué)生參加了海選,所有學(xué)生的成績(jī)均在區(qū)間[30,150]內(nèi),其頻率分布直方圖如圖:
(Ⅰ)求獲得參賽資格的人數(shù);
(Ⅱ)若大賽分初賽和復(fù)賽,在初賽中每人最多有5次選題答題的機(jī)會(huì),累計(jì)答對(duì)3題或答錯(cuò)3題即終止,答對(duì)3題者方可參加復(fù)賽.已知參賽者甲答對(duì)每一個(gè)問題的概率都相同,并且相互之間沒有影響,已知他連續(xù)兩次答錯(cuò)的概率為 ,求甲在初賽中答題個(gè)數(shù)X的分布列及數(shù)學(xué)期望E(X)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為原點(diǎn), sinβ),0<β<α<π.
(I)若 |;
(Ⅱ)設(shè) ,求α,β的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四種說法正確的是( )
①函數(shù)f(x)的定義域是R,則“x∈R,f(x+1)>f(x)”是“函數(shù)f(x)為增函數(shù)”的充要條件;
②命題“ ”的否定是“ ”;
③命題“若x=2,則x2﹣3x+2=0”的逆否命題是真命題;
④p:在△ABC中,若cos2A=cos2B,則A=B;q:y=sinx在第一象限是增函數(shù),則p∧q為真命題.
A.①②③④
B.②③
C.③④
D.③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ ,g(x)=ax+b.
(1)若函數(shù)h(x)=f(x)﹣g(x)在(0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)若直線g(x)=ax+b是函數(shù)f(x)=lnx﹣ 圖象的切線,求a+b的最小值;
(3)當(dāng)b=0時(shí),若f(x)與g(x)的圖象有兩個(gè)交點(diǎn)A(x1 , y1),B(x2 , y2),求證:x1x2>2e2 .
(取e為2.8,取ln2為0.7,取 為1.4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)求證: ;
(3)判斷曲線y=f(x)是否位于x軸下方,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】秦九韶是我國(guó)南宋時(shí)期的數(shù)學(xué)家,他在《數(shù)學(xué)九章》中提出的多項(xiàng)式的秦九韶算法,至今仍是比較先進(jìn)的算法,如圖是事項(xiàng)該算法的程序框圖,執(zhí)行該程序框圖,若輸入n,x的值分別為4,2,則輸出v的值為( )
A.5
B.12
C.25
D.50
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖的程序框圖,若程序運(yùn)行中輸出的一組數(shù)是(x,﹣12),則x的值為( 。
A.27
B.81
C.243
D.729
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com