【題目】某地建一座橋,兩端的橋墩已建好,這兩墩相距m米,余下的工程只需要建兩端橋墩之間的橋面和橋墩.經(jīng)預(yù)測(cè)一個(gè)橋墩的工程費(fèi)用為256萬(wàn)元,距離為x米的相鄰兩墩之間的橋面工程費(fèi)用為(2+ )x萬(wàn)元.假設(shè)橋墩等距離分布,所有橋墩都視為點(diǎn),且不考慮其他因素,記余下工程的費(fèi)用為y萬(wàn)元.假設(shè)需要新建n個(gè)橋墩.
(1)寫(xiě)出n關(guān)于x的函數(shù)關(guān)系式;
(2)寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式;
(3)當(dāng)m=640米時(shí),需新建多少個(gè)橋墩才能使y最。
【答案】
(1)解:
(2)解:∴
=
(3)解:由(1)知,
令f'(x)=0,得 ,所以x=64
當(dāng)0<x<64時(shí)f'(x)<0,f(x)在區(qū)間(0,64)內(nèi)為減函數(shù);
當(dāng)64<x<640時(shí),f'(x)>0,f(x)在區(qū)間(64,640)內(nèi)為增函數(shù),
所以f(x)在x=64處取得最小值,
此時(shí),
故需新建9個(gè)橋墩才能使y最小
【解析】(1)利用兩墩相距m米,寫(xiě)出n關(guān)于x的函數(shù)關(guān)系式;(2)根據(jù)題意余下工程的費(fèi)用y為橋墩的總費(fèi)用加上相鄰兩墩之間的橋面工程總費(fèi)用即可得到y(tǒng)的解析式;(3)把m=640米代入到y(tǒng)的解析式中并求出y′令其等于0,然后討論函數(shù)的增減性判斷函數(shù)的最小值時(shí)m的值代入 ﹣1中求出橋墩個(gè)數(shù)即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= +3lnax﹣x,g(x)=xex+cosx(a≠0).
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若x1∈[1,2],x2∈[0,3],使得f( )>g(x2)成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3﹣3x;
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)在區(qū)間[﹣3,2]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線(xiàn)的極坐標(biāo)方程為,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為的正半軸,建立平面直角坐標(biāo)系.
(1)若曲線(xiàn)為參數(shù))與曲線(xiàn)相交于兩點(diǎn),求;
(2)若是曲線(xiàn)上的動(dòng)點(diǎn),且點(diǎn)的直角坐標(biāo)為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 =(sinx,cosx), =(sinx,sinx),函數(shù)f(x)= .
(1)求f(x)的對(duì)稱(chēng)軸方程;
(2)求使f(x)≥1成立的x的取值集合;
(3)若對(duì)任意實(shí)數(shù) ,不等式f(x)﹣m<2恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有能力互異的3人應(yīng)聘同一公司,他們按照?qǐng)?bào)名順序依次接受面試,經(jīng)理決定“不錄用第一個(gè)接受面試的人,如果第二個(gè)接受面試的人比第一個(gè)能力強(qiáng),就錄用第二個(gè)人,否則就錄用第三個(gè)人”,記該公司錄用到能力最強(qiáng)的人的概率為p,錄用到能力中等的人的概率為q,則(p,q)=( )
A.( , )
B.( , )
C.( , )
D.( , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)镽的函數(shù)f(x)= 是奇函數(shù).
(Ⅰ)求b的值;
(Ⅱ)判斷函數(shù)f(x)的單調(diào)性;
(Ⅲ)若對(duì)任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=xlnx﹣ax2有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍為( )
A.(﹣∞,0)
B.(0,+∞)
C.
D.(0,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓:,,是圓上的一個(gè)動(dòng)點(diǎn),線(xiàn)段的垂直平分線(xiàn)與線(xiàn)段相交于點(diǎn).
(Ⅰ)求點(diǎn)的軌跡方程;
(Ⅱ)記點(diǎn)的軌跡為,,是直線(xiàn)上的兩點(diǎn),滿(mǎn)足,曲線(xiàn)的過(guò),的兩條切線(xiàn)(異于)交于點(diǎn),求四邊形面積的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com